Modelling x-ray scattering from quantum dots using Keating energy-minimised structures

In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2009-02, Vol.167 (1), p.47-52
Hauptverfasser: Rawle, J. L., Howes, P. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 47
container_title The European physical journal. ST, Special topics
container_volume 167
creator Rawle, J. L.
Howes, P. B.
description In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.
doi_str_mv 10.1140/epjst/e2009-00935-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34235696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34235696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKufwMte9BY7eW73KMUXVrwUryHNZsuWfTUPsN_ebFs9eggTht_8mfkhdEvggRAOMztsfZhZClDg9JjA8gxNSCEIlhzI-e-fCXGJrrzfAghJCzZBXx99aZum7jbZN3Z6n3mjQ7BubFSub7Nd1F2IbVb2wWfRj_13q8NYbWfdZo_buqvb2tsy88FFE6Kz_hpdVLrx9uZUp2j1_LRavOLl58vb4nGJTVolYCYlMXkBggGlFZubOTAumOYCNC2lLUESbWS-zsU6LyHPE8GhZJwJAC7ZFN0fYwfX76L1QaVFTLpHd7aPXjFOmZDFCLIjaFzvvbOVGlzdardXBNSoUB0UqoNCdVCoxqm7U7xOWprK6c7U_m-UEkoYh3ni-JHzwyjOOrXto-vS4f_G_wBcC4RV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34235696</pqid></control><display><type>article</type><title>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</title><source>Springer Nature - Complete Springer Journals</source><creator>Rawle, J. L. ; Howes, P. B.</creator><creatorcontrib>Rawle, J. L. ; Howes, P. B.</creatorcontrib><description>In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2009-00935-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nanoscale materials and structures: fabrication and characterization ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum dots ; Regular Article ; Structure of solids and liquids; crystallography ; X-ray diffraction and scattering ; X-ray scattering (including small-angle scattering)</subject><ispartof>The European physical journal. ST, Special topics, 2009-02, Vol.167 (1), p.47-52</ispartof><rights>EDP Sciences and Springer 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</citedby><cites>FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2009-00935-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2009-00935-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21213408$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rawle, J. L.</creatorcontrib><creatorcontrib>Howes, P. B.</creatorcontrib><title>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Regular Article</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction and scattering</subject><subject>X-ray scattering (including small-angle scattering)</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKufwMte9BY7eW73KMUXVrwUryHNZsuWfTUPsN_ebFs9eggTht_8mfkhdEvggRAOMztsfZhZClDg9JjA8gxNSCEIlhzI-e-fCXGJrrzfAghJCzZBXx99aZum7jbZN3Z6n3mjQ7BubFSub7Nd1F2IbVb2wWfRj_13q8NYbWfdZo_buqvb2tsy88FFE6Kz_hpdVLrx9uZUp2j1_LRavOLl58vb4nGJTVolYCYlMXkBggGlFZubOTAumOYCNC2lLUESbWS-zsU6LyHPE8GhZJwJAC7ZFN0fYwfX76L1QaVFTLpHd7aPXjFOmZDFCLIjaFzvvbOVGlzdardXBNSoUB0UqoNCdVCoxqm7U7xOWprK6c7U_m-UEkoYh3ni-JHzwyjOOrXto-vS4f_G_wBcC4RV</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Rawle, J. L.</creator><creator>Howes, P. B.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</title><author>Rawle, J. L. ; Howes, P. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Regular Article</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction and scattering</topic><topic>X-ray scattering (including small-angle scattering)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rawle, J. L.</creatorcontrib><creatorcontrib>Howes, P. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rawle, J. L.</au><au>Howes, P. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>167</volume><issue>1</issue><spage>47</spage><epage>52</epage><pages>47-52</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjst/e2009-00935-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2009-02, Vol.167 (1), p.47-52
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_miscellaneous_34235696
source Springer Nature - Complete Springer Journals
subjects Atomic
Classical and Continuum Physics
Condensed Matter Physics
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials Science
Measurement Science and Instrumentation
Molecular
Nanoscale materials and structures: fabrication and characterization
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum dots
Regular Article
Structure of solids and liquids
crystallography
X-ray diffraction and scattering
X-ray scattering (including small-angle scattering)
title Modelling x-ray scattering from quantum dots using Keating energy-minimised structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20x-ray%20scattering%20from%20quantum%20dots%20using%20Keating%20energy-minimised%20structures&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Rawle,%20J.%20L.&rft.date=2009-02-01&rft.volume=167&rft.issue=1&rft.spage=47&rft.epage=52&rft.pages=47-52&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2009-00935-6&rft_dat=%3Cproquest_cross%3E34235696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34235696&rft_id=info:pmid/&rfr_iscdi=true