Modelling x-ray scattering from quantum dots using Keating energy-minimised structures
In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approac...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2009-02, Vol.167 (1), p.47-52 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | The European physical journal. ST, Special topics |
container_volume | 167 |
creator | Rawle, J. L. Howes, P. B. |
description | In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly. |
doi_str_mv | 10.1140/epjst/e2009-00935-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34235696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34235696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKufwMte9BY7eW73KMUXVrwUryHNZsuWfTUPsN_ebFs9eggTht_8mfkhdEvggRAOMztsfZhZClDg9JjA8gxNSCEIlhzI-e-fCXGJrrzfAghJCzZBXx99aZum7jbZN3Z6n3mjQ7BubFSub7Nd1F2IbVb2wWfRj_13q8NYbWfdZo_buqvb2tsy88FFE6Kz_hpdVLrx9uZUp2j1_LRavOLl58vb4nGJTVolYCYlMXkBggGlFZubOTAumOYCNC2lLUESbWS-zsU6LyHPE8GhZJwJAC7ZFN0fYwfX76L1QaVFTLpHd7aPXjFOmZDFCLIjaFzvvbOVGlzdardXBNSoUB0UqoNCdVCoxqm7U7xOWprK6c7U_m-UEkoYh3ni-JHzwyjOOrXto-vS4f_G_wBcC4RV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34235696</pqid></control><display><type>article</type><title>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</title><source>Springer Nature - Complete Springer Journals</source><creator>Rawle, J. L. ; Howes, P. B.</creator><creatorcontrib>Rawle, J. L. ; Howes, P. B.</creatorcontrib><description>In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2009-00935-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nanoscale materials and structures: fabrication and characterization ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum dots ; Regular Article ; Structure of solids and liquids; crystallography ; X-ray diffraction and scattering ; X-ray scattering (including small-angle scattering)</subject><ispartof>The European physical journal. ST, Special topics, 2009-02, Vol.167 (1), p.47-52</ispartof><rights>EDP Sciences and Springer 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</citedby><cites>FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2009-00935-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2009-00935-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21213408$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rawle, J. L.</creatorcontrib><creatorcontrib>Howes, P. B.</creatorcontrib><title>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Regular Article</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction and scattering</subject><subject>X-ray scattering (including small-angle scattering)</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKufwMte9BY7eW73KMUXVrwUryHNZsuWfTUPsN_ebFs9eggTht_8mfkhdEvggRAOMztsfZhZClDg9JjA8gxNSCEIlhzI-e-fCXGJrrzfAghJCzZBXx99aZum7jbZN3Z6n3mjQ7BubFSub7Nd1F2IbVb2wWfRj_13q8NYbWfdZo_buqvb2tsy88FFE6Kz_hpdVLrx9uZUp2j1_LRavOLl58vb4nGJTVolYCYlMXkBggGlFZubOTAumOYCNC2lLUESbWS-zsU6LyHPE8GhZJwJAC7ZFN0fYwfX76L1QaVFTLpHd7aPXjFOmZDFCLIjaFzvvbOVGlzdardXBNSoUB0UqoNCdVCoxqm7U7xOWprK6c7U_m-UEkoYh3ni-JHzwyjOOrXto-vS4f_G_wBcC4RV</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Rawle, J. L.</creator><creator>Howes, P. B.</creator><general>Springer-Verlag</general><general>EDP Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090201</creationdate><title>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</title><author>Rawle, J. L. ; Howes, P. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3661c79053022f38c803453a450a2d6ed061ac67b75b7d0778c840d343500463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Regular Article</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction and scattering</topic><topic>X-ray scattering (including small-angle scattering)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rawle, J. L.</creatorcontrib><creatorcontrib>Howes, P. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rawle, J. L.</au><au>Howes, P. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling x-ray scattering from quantum dots using Keating energy-minimised structures</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2009-02-01</date><risdate>2009</risdate><volume>167</volume><issue>1</issue><spage>47</spage><epage>52</epage><pages>47-52</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In a traditional analysis of surface x-ray diffraction data, the surface unit cell can be defined by a small set of parameters, and fitting of experimental data is accomplished using well-established procedures. A quantum dot (QD), however, may contain as many as 20,000 atoms, so a different approach to data analysis is required. A method for modelling a quantum dot and relaxing the structure by minimising the Keating energy is presented, and the simulation of x-ray scattering from such models is described. A method is then developed for simulating the alloying of InAs and GaAs inside the QDs using intermediate Keating parameters. This removes the need to relax and average multiple models with randomly distributed atoms, which would increase the computation time significantly.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1140/epjst/e2009-00935-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2009-02, Vol.167 (1), p.47-52 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_miscellaneous_34235696 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic Classical and Continuum Physics Condensed Matter Physics Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials Science Measurement Science and Instrumentation Molecular Nanoscale materials and structures: fabrication and characterization Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Optical and Plasma Physics Physics Physics and Astronomy Quantum dots Regular Article Structure of solids and liquids crystallography X-ray diffraction and scattering X-ray scattering (including small-angle scattering) |
title | Modelling x-ray scattering from quantum dots using Keating energy-minimised structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20x-ray%20scattering%20from%20quantum%20dots%20using%20Keating%20energy-minimised%20structures&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Rawle,%20J.%20L.&rft.date=2009-02-01&rft.volume=167&rft.issue=1&rft.spage=47&rft.epage=52&rft.pages=47-52&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2009-00935-6&rft_dat=%3Cproquest_cross%3E34235696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34235696&rft_id=info:pmid/&rfr_iscdi=true |