Al(In)As–(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers

We present a new design for quantum cascade lasers (QCLs) without the typically used injector between two consecutive active stages. The lasers are realized with the InP-based material system AlInAs/GaInAs. With additional AlAs and InAs layers a significant optimization of the structure can be reali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2009-03, Vol.311 (7), p.1932-1934
Hauptverfasser: Boehm, Gerhard, Katz, Simeon, Meyer, Ralf, Amann, Markus-Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1934
container_issue 7
container_start_page 1932
container_title Journal of crystal growth
container_volume 311
creator Boehm, Gerhard
Katz, Simeon
Meyer, Ralf
Amann, Markus-Christian
description We present a new design for quantum cascade lasers (QCLs) without the typically used injector between two consecutive active stages. The lasers are realized with the InP-based material system AlInAs/GaInAs. With additional AlAs and InAs layers a significant optimization of the structure can be realized. In this improved structure the possibility of electrons escaping into the quasi-continuum is drastically reduced by the AlAs-blocking layer. On the other hand, InAs, a material with a very low effective mass, significantly prolongs the carrier lifetime, enhancing the population inversion and increasing the dipole matrix element of the transition. Both inserted layers result in an overall improvement of the device properties, basically the threshold current density ( j th), maximum operating temperature ( T max), output power, slope efficiency and characteristic temperature T 0. With high reflection coated facets a record threshold current density as low as 450 A/cm 2 at 300 K was achieved in the pulsed mode.
doi_str_mv 10.1016/j.jcrysgro.2008.10.082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34228241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024808011871</els_id><sourcerecordid>34228241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-188dcc385eb976d75fbc25387c16acd78e62ee01bca5cc0c4caf6895d424fc353</originalsourceid><addsrcrecordid>eNqFkMtKxEAQRRtRcHz8gmSj6CJjP9JJu3MQHwOCG11K01OpSIdM99iVEdz5D_6hX2LCqFs3VXC5t4p7GDsSfCq4KM_baQvpnV5SnErOzSBOuZFbbCJMpXLNudxmk2HKnMvC7LI9opbzISn4hD3PutN5OJvR18fn6a07m4cZZdQn50MOcbnCQK7HOnPQ-zfMEr74GChrYsp8aBH6mDokyl7XLvTrZQaOwNWYdY4w0QHbaVxHePiz99nTzfXj1V1-_3A7v5rd56Aq1efCmBpAGY2Li6qsK90sQGplKhClg7oyWEpELhbgNACHAlxTmgtdF7JoQGm1z042d1cpvq6Rerv0BNh1LmBck1WFlEYWYjCWGyOkSJSwsavkly69W8HtSNO29pemHWmO-kBzCB7_fBgLdk1yATz9paUolNR69F1ufDjUffOYLIHHAFj7NNCydfT_vfoGa12Qzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34228241</pqid></control><display><type>article</type><title>Al(In)As–(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boehm, Gerhard ; Katz, Simeon ; Meyer, Ralf ; Amann, Markus-Christian</creator><creatorcontrib>Boehm, Gerhard ; Katz, Simeon ; Meyer, Ralf ; Amann, Markus-Christian</creatorcontrib><description>We present a new design for quantum cascade lasers (QCLs) without the typically used injector between two consecutive active stages. The lasers are realized with the InP-based material system AlInAs/GaInAs. With additional AlAs and InAs layers a significant optimization of the structure can be realized. In this improved structure the possibility of electrons escaping into the quasi-continuum is drastically reduced by the AlAs-blocking layer. On the other hand, InAs, a material with a very low effective mass, significantly prolongs the carrier lifetime, enhancing the population inversion and increasing the dipole matrix element of the transition. Both inserted layers result in an overall improvement of the device properties, basically the threshold current density ( j th), maximum operating temperature ( T max), output power, slope efficiency and characteristic temperature T 0. With high reflection coated facets a record threshold current density as low as 450 A/cm 2 at 300 K was achieved in the pulsed mode.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2008.10.082</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A3. Laser epitaxy ; B1. Arsenates ; B1. Phosphides ; B2. Semiconducting III/V materials ; B3. Infrared devices ; B3. Laser diodes ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Lasers ; Optics ; Physics ; Semiconductor lasers; laser diodes</subject><ispartof>Journal of crystal growth, 2009-03, Vol.311 (7), p.1932-1934</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-188dcc385eb976d75fbc25387c16acd78e62ee01bca5cc0c4caf6895d424fc353</citedby><cites>FETCH-LOGICAL-c373t-188dcc385eb976d75fbc25387c16acd78e62ee01bca5cc0c4caf6895d424fc353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2008.10.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21432552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boehm, Gerhard</creatorcontrib><creatorcontrib>Katz, Simeon</creatorcontrib><creatorcontrib>Meyer, Ralf</creatorcontrib><creatorcontrib>Amann, Markus-Christian</creatorcontrib><title>Al(In)As–(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers</title><title>Journal of crystal growth</title><description>We present a new design for quantum cascade lasers (QCLs) without the typically used injector between two consecutive active stages. The lasers are realized with the InP-based material system AlInAs/GaInAs. With additional AlAs and InAs layers a significant optimization of the structure can be realized. In this improved structure the possibility of electrons escaping into the quasi-continuum is drastically reduced by the AlAs-blocking layer. On the other hand, InAs, a material with a very low effective mass, significantly prolongs the carrier lifetime, enhancing the population inversion and increasing the dipole matrix element of the transition. Both inserted layers result in an overall improvement of the device properties, basically the threshold current density ( j th), maximum operating temperature ( T max), output power, slope efficiency and characteristic temperature T 0. With high reflection coated facets a record threshold current density as low as 450 A/cm 2 at 300 K was achieved in the pulsed mode.</description><subject>A3. Laser epitaxy</subject><subject>B1. Arsenates</subject><subject>B1. Phosphides</subject><subject>B2. Semiconducting III/V materials</subject><subject>B3. Infrared devices</subject><subject>B3. Laser diodes</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Lasers</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxEAQRRtRcHz8gmSj6CJjP9JJu3MQHwOCG11K01OpSIdM99iVEdz5D_6hX2LCqFs3VXC5t4p7GDsSfCq4KM_baQvpnV5SnErOzSBOuZFbbCJMpXLNudxmk2HKnMvC7LI9opbzISn4hD3PutN5OJvR18fn6a07m4cZZdQn50MOcbnCQK7HOnPQ-zfMEr74GChrYsp8aBH6mDokyl7XLvTrZQaOwNWYdY4w0QHbaVxHePiz99nTzfXj1V1-_3A7v5rd56Aq1efCmBpAGY2Li6qsK90sQGplKhClg7oyWEpELhbgNACHAlxTmgtdF7JoQGm1z042d1cpvq6Rerv0BNh1LmBck1WFlEYWYjCWGyOkSJSwsavkly69W8HtSNO29pemHWmO-kBzCB7_fBgLdk1yATz9paUolNR69F1ufDjUffOYLIHHAFj7NNCydfT_vfoGa12Qzg</recordid><startdate>20090315</startdate><enddate>20090315</enddate><creator>Boehm, Gerhard</creator><creator>Katz, Simeon</creator><creator>Meyer, Ralf</creator><creator>Amann, Markus-Christian</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090315</creationdate><title>Al(In)As–(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers</title><author>Boehm, Gerhard ; Katz, Simeon ; Meyer, Ralf ; Amann, Markus-Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-188dcc385eb976d75fbc25387c16acd78e62ee01bca5cc0c4caf6895d424fc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>A3. Laser epitaxy</topic><topic>B1. Arsenates</topic><topic>B1. Phosphides</topic><topic>B2. Semiconducting III/V materials</topic><topic>B3. Infrared devices</topic><topic>B3. Laser diodes</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Lasers</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Gerhard</creatorcontrib><creatorcontrib>Katz, Simeon</creatorcontrib><creatorcontrib>Meyer, Ralf</creatorcontrib><creatorcontrib>Amann, Markus-Christian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Gerhard</au><au>Katz, Simeon</au><au>Meyer, Ralf</au><au>Amann, Markus-Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Al(In)As–(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers</atitle><jtitle>Journal of crystal growth</jtitle><date>2009-03-15</date><risdate>2009</risdate><volume>311</volume><issue>7</issue><spage>1932</spage><epage>1934</epage><pages>1932-1934</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>We present a new design for quantum cascade lasers (QCLs) without the typically used injector between two consecutive active stages. The lasers are realized with the InP-based material system AlInAs/GaInAs. With additional AlAs and InAs layers a significant optimization of the structure can be realized. In this improved structure the possibility of electrons escaping into the quasi-continuum is drastically reduced by the AlAs-blocking layer. On the other hand, InAs, a material with a very low effective mass, significantly prolongs the carrier lifetime, enhancing the population inversion and increasing the dipole matrix element of the transition. Both inserted layers result in an overall improvement of the device properties, basically the threshold current density ( j th), maximum operating temperature ( T max), output power, slope efficiency and characteristic temperature T 0. With high reflection coated facets a record threshold current density as low as 450 A/cm 2 at 300 K was achieved in the pulsed mode.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2008.10.082</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2009-03, Vol.311 (7), p.1932-1934
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_34228241
source Access via ScienceDirect (Elsevier)
subjects A3. Laser epitaxy
B1. Arsenates
B1. Phosphides
B2. Semiconducting III/V materials
B3. Infrared devices
B3. Laser diodes
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Lasers
Optics
Physics
Semiconductor lasers
laser diodes
title Al(In)As–(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Al(In)As%E2%80%93(Ga)InAs%20strain-compensated%20active%20regions%20for%20injectorless%20quantum%20cascade%20lasers&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Boehm,%20Gerhard&rft.date=2009-03-15&rft.volume=311&rft.issue=7&rft.spage=1932&rft.epage=1934&rft.pages=1932-1934&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2008.10.082&rft_dat=%3Cproquest_cross%3E34228241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34228241&rft_id=info:pmid/&rft_els_id=S0022024808011871&rfr_iscdi=true