Growth of Optical Crystals by the Micro-Pulling-Down Method
The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the botto...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2009-04, Vol.34 (4), p.266-270 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270 |
---|---|
container_issue | 4 |
container_start_page | 266 |
container_title | MRS bulletin |
container_volume | 34 |
creator | Yoshikawa, Akira Chani, Valery |
description | The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method. |
doi_str_mv | 10.1557/mrs2009.77 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34219692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs2009_77</cupid><sourcerecordid>34219692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pxU9QEDyonUmaNAmedOoUHHOgeAxpmm6d_TOTlLlvb0eHgoin9_Lj4XkfAI4RHCBK2WVpHYZQDBjbAT0kIh4iguku6EHOo5DFguyDA-cWECIKGe2Bq5GtV34e1FkwWfpcqyIY2rXzqnBBsg783ATjXNs6fG6KIq9m4W29qoKx8fM6PQR7WevM0fb2wev93cvwIXyajB6H10-hJjHzYYo0RVlsEFHKYJ5ATlKVZoRlkFJDYawVEZprlfCIaqihMBkzEUo4xEgTGvXBaZe7tPVHY5yXZe60KQpVmbpxMiIYiVjgFp78gou6sVXbTWJBMIZEUN6qs061bzlnTSaXNi-VXUsE5WZFuV1RMtbi8w67FlUzY38i_9Rhp3Pnzed3rrLvMmYRozIeTSWfkhuM3ojc-IttFVUmNk9n5t_4L9aKj7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942204958</pqid></control><display><type>article</type><title>Growth of Optical Crystals by the Micro-Pulling-Down Method</title><source>SpringerLink Journals</source><creator>Yoshikawa, Akira ; Chani, Valery</creator><creatorcontrib>Yoshikawa, Akira ; Chani, Valery</creatorcontrib><description>The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs2009.77</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Capillarity ; Characterization and Evaluation of Materials ; Crucibles ; Crystal fibers ; Crystal growth ; Crystal pulling ; Energy Materials ; Materials Engineering ; Materials Science ; Nanotechnology ; Technical Feature ; Tubes</subject><ispartof>MRS bulletin, 2009-04, Vol.34 (4), p.266-270</ispartof><rights>Copyright © Materials Research Society 2009</rights><rights>The Materials Research Society 2009</rights><rights>The Materials Research Society 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</citedby><cites>FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs2009.77$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/mrs2009.77$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yoshikawa, Akira</creatorcontrib><creatorcontrib>Chani, Valery</creatorcontrib><title>Growth of Optical Crystals by the Micro-Pulling-Down Method</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.</description><subject>Applied and Technical Physics</subject><subject>Capillarity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Crucibles</subject><subject>Crystal fibers</subject><subject>Crystal growth</subject><subject>Crystal pulling</subject><subject>Energy Materials</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Technical Feature</subject><subject>Tubes</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pxU9QEDyonUmaNAmedOoUHHOgeAxpmm6d_TOTlLlvb0eHgoin9_Lj4XkfAI4RHCBK2WVpHYZQDBjbAT0kIh4iguku6EHOo5DFguyDA-cWECIKGe2Bq5GtV34e1FkwWfpcqyIY2rXzqnBBsg783ATjXNs6fG6KIq9m4W29qoKx8fM6PQR7WevM0fb2wev93cvwIXyajB6H10-hJjHzYYo0RVlsEFHKYJ5ATlKVZoRlkFJDYawVEZprlfCIaqihMBkzEUo4xEgTGvXBaZe7tPVHY5yXZe60KQpVmbpxMiIYiVjgFp78gou6sVXbTWJBMIZEUN6qs061bzlnTSaXNi-VXUsE5WZFuV1RMtbi8w67FlUzY38i_9Rhp3Pnzed3rrLvMmYRozIeTSWfkhuM3ojc-IttFVUmNk9n5t_4L9aKj7Y</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Yoshikawa, Akira</creator><creator>Chani, Valery</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090401</creationdate><title>Growth of Optical Crystals by the Micro-Pulling-Down Method</title><author>Yoshikawa, Akira ; Chani, Valery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied and Technical Physics</topic><topic>Capillarity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Crucibles</topic><topic>Crystal fibers</topic><topic>Crystal growth</topic><topic>Crystal pulling</topic><topic>Energy Materials</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Technical Feature</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshikawa, Akira</creatorcontrib><creatorcontrib>Chani, Valery</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshikawa, Akira</au><au>Chani, Valery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Optical Crystals by the Micro-Pulling-Down Method</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>34</volume><issue>4</issue><spage>266</spage><epage>270</epage><pages>266-270</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs2009.77</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2009-04, Vol.34 (4), p.266-270 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_miscellaneous_34219692 |
source | SpringerLink Journals |
subjects | Applied and Technical Physics Capillarity Characterization and Evaluation of Materials Crucibles Crystal fibers Crystal growth Crystal pulling Energy Materials Materials Engineering Materials Science Nanotechnology Technical Feature Tubes |
title | Growth of Optical Crystals by the Micro-Pulling-Down Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Optical%20Crystals%20by%20the%20Micro-Pulling-Down%20Method&rft.jtitle=MRS%20bulletin&rft.au=Yoshikawa,%20Akira&rft.date=2009-04-01&rft.volume=34&rft.issue=4&rft.spage=266&rft.epage=270&rft.pages=266-270&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs2009.77&rft_dat=%3Cproquest_cross%3E34219692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2942204958&rft_id=info:pmid/&rft_cupid=10_1557_mrs2009_77&rfr_iscdi=true |