Growth of Optical Crystals by the Micro-Pulling-Down Method

The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the botto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2009-04, Vol.34 (4), p.266-270
Hauptverfasser: Yoshikawa, Akira, Chani, Valery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 4
container_start_page 266
container_title MRS bulletin
container_volume 34
creator Yoshikawa, Akira
Chani, Valery
description The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.
doi_str_mv 10.1557/mrs2009.77
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34219692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs2009_77</cupid><sourcerecordid>34219692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pxU9QEDyonUmaNAmedOoUHHOgeAxpmm6d_TOTlLlvb0eHgoin9_Lj4XkfAI4RHCBK2WVpHYZQDBjbAT0kIh4iguku6EHOo5DFguyDA-cWECIKGe2Bq5GtV34e1FkwWfpcqyIY2rXzqnBBsg783ATjXNs6fG6KIq9m4W29qoKx8fM6PQR7WevM0fb2wev93cvwIXyajB6H10-hJjHzYYo0RVlsEFHKYJ5ATlKVZoRlkFJDYawVEZprlfCIaqihMBkzEUo4xEgTGvXBaZe7tPVHY5yXZe60KQpVmbpxMiIYiVjgFp78gou6sVXbTWJBMIZEUN6qs061bzlnTSaXNi-VXUsE5WZFuV1RMtbi8w67FlUzY38i_9Rhp3Pnzed3rrLvMmYRozIeTSWfkhuM3ojc-IttFVUmNk9n5t_4L9aKj7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942204958</pqid></control><display><type>article</type><title>Growth of Optical Crystals by the Micro-Pulling-Down Method</title><source>SpringerLink Journals</source><creator>Yoshikawa, Akira ; Chani, Valery</creator><creatorcontrib>Yoshikawa, Akira ; Chani, Valery</creatorcontrib><description>The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs2009.77</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Capillarity ; Characterization and Evaluation of Materials ; Crucibles ; Crystal fibers ; Crystal growth ; Crystal pulling ; Energy Materials ; Materials Engineering ; Materials Science ; Nanotechnology ; Technical Feature ; Tubes</subject><ispartof>MRS bulletin, 2009-04, Vol.34 (4), p.266-270</ispartof><rights>Copyright © Materials Research Society 2009</rights><rights>The Materials Research Society 2009</rights><rights>The Materials Research Society 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</citedby><cites>FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs2009.77$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/mrs2009.77$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yoshikawa, Akira</creatorcontrib><creatorcontrib>Chani, Valery</creatorcontrib><title>Growth of Optical Crystals by the Micro-Pulling-Down Method</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.</description><subject>Applied and Technical Physics</subject><subject>Capillarity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Crucibles</subject><subject>Crystal fibers</subject><subject>Crystal growth</subject><subject>Crystal pulling</subject><subject>Energy Materials</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Technical Feature</subject><subject>Tubes</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pxU9QEDyonUmaNAmedOoUHHOgeAxpmm6d_TOTlLlvb0eHgoin9_Lj4XkfAI4RHCBK2WVpHYZQDBjbAT0kIh4iguku6EHOo5DFguyDA-cWECIKGe2Bq5GtV34e1FkwWfpcqyIY2rXzqnBBsg783ATjXNs6fG6KIq9m4W29qoKx8fM6PQR7WevM0fb2wev93cvwIXyajB6H10-hJjHzYYo0RVlsEFHKYJ5ATlKVZoRlkFJDYawVEZprlfCIaqihMBkzEUo4xEgTGvXBaZe7tPVHY5yXZe60KQpVmbpxMiIYiVjgFp78gou6sVXbTWJBMIZEUN6qs061bzlnTSaXNi-VXUsE5WZFuV1RMtbi8w67FlUzY38i_9Rhp3Pnzed3rrLvMmYRozIeTSWfkhuM3ojc-IttFVUmNk9n5t_4L9aKj7Y</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Yoshikawa, Akira</creator><creator>Chani, Valery</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090401</creationdate><title>Growth of Optical Crystals by the Micro-Pulling-Down Method</title><author>Yoshikawa, Akira ; Chani, Valery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d1c51f6e14aae28b084dadf47f055e506ca49c8cab835c0c09ef7e31b8021c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied and Technical Physics</topic><topic>Capillarity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Crucibles</topic><topic>Crystal fibers</topic><topic>Crystal growth</topic><topic>Crystal pulling</topic><topic>Energy Materials</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Technical Feature</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshikawa, Akira</creatorcontrib><creatorcontrib>Chani, Valery</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshikawa, Akira</au><au>Chani, Valery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth of Optical Crystals by the Micro-Pulling-Down Method</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>34</volume><issue>4</issue><spage>266</spage><epage>270</epage><pages>266-270</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>The micro-pulling-down technique is a crystal growth method that has been mostly developed since 1992. The general scheme of the growth system is relatively simple: the melt (oxide, fluoride, metal) residing in a crucible is transported in downward through microcapillary channel(s) made in the bottom of the crucible. Two driving forces (capillary action and gravity) support the delivery of the melt to the liquid/solid growth interface formed under the crucible due to a properly established temperature gradient. Appropriate configuration of the crucible bottom allows for controlling of the crystal shape (fibers, rods, tubes, plates) and the dimensions of the crystals' cross sections that range approximately from 0.1 to 10 mm. A great number of scientifically and industrially important optical crystal fibers have been successfully produced using this method.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs2009.77</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2009-04, Vol.34 (4), p.266-270
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_miscellaneous_34219692
source SpringerLink Journals
subjects Applied and Technical Physics
Capillarity
Characterization and Evaluation of Materials
Crucibles
Crystal fibers
Crystal growth
Crystal pulling
Energy Materials
Materials Engineering
Materials Science
Nanotechnology
Technical Feature
Tubes
title Growth of Optical Crystals by the Micro-Pulling-Down Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20of%20Optical%20Crystals%20by%20the%20Micro-Pulling-Down%20Method&rft.jtitle=MRS%20bulletin&rft.au=Yoshikawa,%20Akira&rft.date=2009-04-01&rft.volume=34&rft.issue=4&rft.spage=266&rft.epage=270&rft.pages=266-270&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs2009.77&rft_dat=%3Cproquest_cross%3E34219692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2942204958&rft_id=info:pmid/&rft_cupid=10_1557_mrs2009_77&rfr_iscdi=true