Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM

A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2008-08, Vol.51 (17), p.4517-4527
Hauptverfasser: Ravnik, J., Škerget, L., Žunič, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4527
container_issue 17
container_start_page 4517
container_title International journal of heat and mass transfer
container_volume 51
creator Ravnik, J.
Škerget, L.
Žunič, Z.
description A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values 10 3 ⩽ Ra ⩽ 10 5 . The results for an inclined enclosure with width to height ratio 1:2 are also presented.
doi_str_mv 10.1016/j.ijheatmasstransfer.2008.01.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34078084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931008000719</els_id><sourcerecordid>34078084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</originalsourceid><addsrcrecordid>eNqNkM1O3TAQhS3UStxS3iEbqm4SxnbiODsopfyIqhtgwcYyzlh1lBtT27nS3fUd-oZ9Ehwu6oZNpZF9Rv50ZnwI-UyhokDF8VC54SfqtNYxpqCnaDFUDEBWQHPJPbKisu1KRmX3jqwAaFt2nMI--RDjsLRQixV5uMfRG5e2f3__2fiQ3KIL68N6HnVyflp0wb8Wk05z0GNh_LRB8_LipkIvpxndhH2BWfg4Bywet8WX8-8fyXurx4iHr_cBuft2fnt2Wd78uLg6O70pTQ08lT1YaxvsGJe0xpZzzG0t6GNtBRe6tW1jGmF7CUb0ggnONOs6yroaWCM6zQ_Ip53vU_C_ZoxJrV00OI56Qj9HxWtoJcg6gyc70AQfY0CrnoJb67BVFNQSqhrU21DVEqoCmktmi6PXWToaPdrMGBf_-TBo8s5SZO56x2H--MZll2hcDgh7F3J6qvfu_4c-A4IMm1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34078084</pqid></control><display><type>article</type><title>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</title><source>Elsevier ScienceDirect Journals</source><creator>Ravnik, J. ; Škerget, L. ; Žunič, Z.</creator><creatorcontrib>Ravnik, J. ; Škerget, L. ; Žunič, Z.</creatorcontrib><description>A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values 10 3 ⩽ Ra ⩽ 10 5 . The results for an inclined enclosure with width to height ratio 1:2 are also presented.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2008.01.018</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational methods in fluid dynamics ; Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Inclined enclosure ; Laminar flows ; Laminar flows in cavities ; Laminar viscous fluid flow ; Natural convection ; Physics ; Subdomain boundary element method ; Turbulent flows, convection, and heat transfer ; Velocity–vorticity formulation</subject><ispartof>International journal of heat and mass transfer, 2008-08, Vol.51 (17), p.4517-4527</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</citedby><cites>FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931008000719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20563686$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravnik, J.</creatorcontrib><creatorcontrib>Škerget, L.</creatorcontrib><creatorcontrib>Žunič, Z.</creatorcontrib><title>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</title><title>International journal of heat and mass transfer</title><description>A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values 10 3 ⩽ Ra ⩽ 10 5 . The results for an inclined enclosure with width to height ratio 1:2 are also presented.</description><subject>Computational methods in fluid dynamics</subject><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inclined enclosure</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Laminar viscous fluid flow</subject><subject>Natural convection</subject><subject>Physics</subject><subject>Subdomain boundary element method</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity–vorticity formulation</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM1O3TAQhS3UStxS3iEbqm4SxnbiODsopfyIqhtgwcYyzlh1lBtT27nS3fUd-oZ9Ehwu6oZNpZF9Rv50ZnwI-UyhokDF8VC54SfqtNYxpqCnaDFUDEBWQHPJPbKisu1KRmX3jqwAaFt2nMI--RDjsLRQixV5uMfRG5e2f3__2fiQ3KIL68N6HnVyflp0wb8Wk05z0GNh_LRB8_LipkIvpxndhH2BWfg4Bywet8WX8-8fyXurx4iHr_cBuft2fnt2Wd78uLg6O70pTQ08lT1YaxvsGJe0xpZzzG0t6GNtBRe6tW1jGmF7CUb0ggnONOs6yroaWCM6zQ_Ip53vU_C_ZoxJrV00OI56Qj9HxWtoJcg6gyc70AQfY0CrnoJb67BVFNQSqhrU21DVEqoCmktmi6PXWToaPdrMGBf_-TBo8s5SZO56x2H--MZll2hcDgh7F3J6qvfu_4c-A4IMm1A</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Ravnik, J.</creator><creator>Škerget, L.</creator><creator>Žunič, Z.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080801</creationdate><title>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</title><author>Ravnik, J. ; Škerget, L. ; Žunič, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inclined enclosure</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Laminar viscous fluid flow</topic><topic>Natural convection</topic><topic>Physics</topic><topic>Subdomain boundary element method</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity–vorticity formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravnik, J.</creatorcontrib><creatorcontrib>Škerget, L.</creatorcontrib><creatorcontrib>Žunič, Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravnik, J.</au><au>Škerget, L.</au><au>Žunič, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>51</volume><issue>17</issue><spage>4517</spage><epage>4527</epage><pages>4517-4527</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values 10 3 ⩽ Ra ⩽ 10 5 . The results for an inclined enclosure with width to height ratio 1:2 are also presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2008.01.018</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2008-08, Vol.51 (17), p.4517-4527
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_34078084
source Elsevier ScienceDirect Journals
subjects Computational methods in fluid dynamics
Convection and heat transfer
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Inclined enclosure
Laminar flows
Laminar flows in cavities
Laminar viscous fluid flow
Natural convection
Physics
Subdomain boundary element method
Turbulent flows, convection, and heat transfer
Velocity–vorticity formulation
title Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%E2%80%93vorticity%20formulation%20for%203D%20natural%20convection%20in%20an%20inclined%20enclosure%20by%20BEM&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Ravnik,%20J.&rft.date=2008-08-01&rft.volume=51&rft.issue=17&rft.spage=4517&rft.epage=4527&rft.pages=4517-4527&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2008.01.018&rft_dat=%3Cproquest_cross%3E34078084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34078084&rft_id=info:pmid/&rft_els_id=S0017931008000719&rfr_iscdi=true