Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM
A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm s...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2008-08, Vol.51 (17), p.4517-4527 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4527 |
---|---|
container_issue | 17 |
container_start_page | 4517 |
container_title | International journal of heat and mass transfer |
container_volume | 51 |
creator | Ravnik, J. Škerget, L. Žunič, Z. |
description | A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values
10
3
⩽
Ra
⩽
10
5
. The results for an inclined enclosure with width to height ratio 1:2 are also presented. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2008.01.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34078084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931008000719</els_id><sourcerecordid>34078084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</originalsourceid><addsrcrecordid>eNqNkM1O3TAQhS3UStxS3iEbqm4SxnbiODsopfyIqhtgwcYyzlh1lBtT27nS3fUd-oZ9Ehwu6oZNpZF9Rv50ZnwI-UyhokDF8VC54SfqtNYxpqCnaDFUDEBWQHPJPbKisu1KRmX3jqwAaFt2nMI--RDjsLRQixV5uMfRG5e2f3__2fiQ3KIL68N6HnVyflp0wb8Wk05z0GNh_LRB8_LipkIvpxndhH2BWfg4Bywet8WX8-8fyXurx4iHr_cBuft2fnt2Wd78uLg6O70pTQ08lT1YaxvsGJe0xpZzzG0t6GNtBRe6tW1jGmF7CUb0ggnONOs6yroaWCM6zQ_Ip53vU_C_ZoxJrV00OI56Qj9HxWtoJcg6gyc70AQfY0CrnoJb67BVFNQSqhrU21DVEqoCmktmi6PXWToaPdrMGBf_-TBo8s5SZO56x2H--MZll2hcDgh7F3J6qvfu_4c-A4IMm1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34078084</pqid></control><display><type>article</type><title>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</title><source>Elsevier ScienceDirect Journals</source><creator>Ravnik, J. ; Škerget, L. ; Žunič, Z.</creator><creatorcontrib>Ravnik, J. ; Škerget, L. ; Žunič, Z.</creatorcontrib><description>A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values
10
3
⩽
Ra
⩽
10
5
. The results for an inclined enclosure with width to height ratio 1:2 are also presented.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2008.01.018</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational methods in fluid dynamics ; Convection and heat transfer ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Inclined enclosure ; Laminar flows ; Laminar flows in cavities ; Laminar viscous fluid flow ; Natural convection ; Physics ; Subdomain boundary element method ; Turbulent flows, convection, and heat transfer ; Velocity–vorticity formulation</subject><ispartof>International journal of heat and mass transfer, 2008-08, Vol.51 (17), p.4517-4527</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</citedby><cites>FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931008000719$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20563686$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravnik, J.</creatorcontrib><creatorcontrib>Škerget, L.</creatorcontrib><creatorcontrib>Žunič, Z.</creatorcontrib><title>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</title><title>International journal of heat and mass transfer</title><description>A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values
10
3
⩽
Ra
⩽
10
5
. The results for an inclined enclosure with width to height ratio 1:2 are also presented.</description><subject>Computational methods in fluid dynamics</subject><subject>Convection and heat transfer</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inclined enclosure</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Laminar viscous fluid flow</subject><subject>Natural convection</subject><subject>Physics</subject><subject>Subdomain boundary element method</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Velocity–vorticity formulation</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM1O3TAQhS3UStxS3iEbqm4SxnbiODsopfyIqhtgwcYyzlh1lBtT27nS3fUd-oZ9Ehwu6oZNpZF9Rv50ZnwI-UyhokDF8VC54SfqtNYxpqCnaDFUDEBWQHPJPbKisu1KRmX3jqwAaFt2nMI--RDjsLRQixV5uMfRG5e2f3__2fiQ3KIL68N6HnVyflp0wb8Wk05z0GNh_LRB8_LipkIvpxndhH2BWfg4Bywet8WX8-8fyXurx4iHr_cBuft2fnt2Wd78uLg6O70pTQ08lT1YaxvsGJe0xpZzzG0t6GNtBRe6tW1jGmF7CUb0ggnONOs6yroaWCM6zQ_Ip53vU_C_ZoxJrV00OI56Qj9HxWtoJcg6gyc70AQfY0CrnoJb67BVFNQSqhrU21DVEqoCmktmi6PXWToaPdrMGBf_-TBo8s5SZO56x2H--MZll2hcDgh7F3J6qvfu_4c-A4IMm1A</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Ravnik, J.</creator><creator>Škerget, L.</creator><creator>Žunič, Z.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080801</creationdate><title>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</title><author>Ravnik, J. ; Škerget, L. ; Žunič, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-d0fff5e923814e733eff5461b4f636a7f75c56fd80c6d62632a299129402569a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Convection and heat transfer</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inclined enclosure</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Laminar viscous fluid flow</topic><topic>Natural convection</topic><topic>Physics</topic><topic>Subdomain boundary element method</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Velocity–vorticity formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravnik, J.</creatorcontrib><creatorcontrib>Škerget, L.</creatorcontrib><creatorcontrib>Žunič, Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravnik, J.</au><au>Škerget, L.</au><au>Žunič, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>51</volume><issue>17</issue><spage>4517</spage><epage>4527</epage><pages>4517-4527</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A natural convection phenomenon is studied in cubic and parallelepipedal inclined enclosures. The simulation of coupled laminar viscous flow and heat transfer is performed using a novel algorithm based on a combination of single domain Boundary element method (BEM) and subdomain BEM. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations coupled with the energy equation using the Boussinesq approximation. The subdomain BEM is used to solve the kinematics equation, the vorticity transport equation and the energy equation. The boundary vorticity values, which are needed as boundary conditions for the vorticity transport equation, are calculated by singe domain BEM solution of the kinematics equation. Simulation results are compared with benchmark results for a cubic inclined enclosure for Rayleigh number values
10
3
⩽
Ra
⩽
10
5
. The results for an inclined enclosure with width to height ratio 1:2 are also presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2008.01.018</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2008-08, Vol.51 (17), p.4517-4527 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_34078084 |
source | Elsevier ScienceDirect Journals |
subjects | Computational methods in fluid dynamics Convection and heat transfer Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Inclined enclosure Laminar flows Laminar flows in cavities Laminar viscous fluid flow Natural convection Physics Subdomain boundary element method Turbulent flows, convection, and heat transfer Velocity–vorticity formulation |
title | Velocity–vorticity formulation for 3D natural convection in an inclined enclosure by BEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%E2%80%93vorticity%20formulation%20for%203D%20natural%20convection%20in%20an%20inclined%20enclosure%20by%20BEM&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Ravnik,%20J.&rft.date=2008-08-01&rft.volume=51&rft.issue=17&rft.spage=4517&rft.epage=4527&rft.pages=4517-4527&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2008.01.018&rft_dat=%3Cproquest_cross%3E34078084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34078084&rft_id=info:pmid/&rft_els_id=S0017931008000719&rfr_iscdi=true |