Traps identification in silicon nanocrystals memories by low noise technique

This work reports the extraction of oxide traps properties of n-metal–oxide–semiconductor field-effect transistors with W × L = 0.5 × 0.1 μm 2 using random telegraph signals (RTS) techniques. RTS study of nc-Si has been performed on thin tunnel oxides from 0.8 to 2.0 nm. RTS signals were two or more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2008-07, Vol.28 (5), p.882-886
Hauptverfasser: Sghaier, Ne, Sghaier, Na, Troudi, M., Militaru, L., Kalboussi, A., Souifi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 886
container_issue 5
container_start_page 882
container_title Materials Science & Engineering C
container_volume 28
creator Sghaier, Ne
Sghaier, Na
Troudi, M.
Militaru, L.
Kalboussi, A.
Souifi, A.
description This work reports the extraction of oxide traps properties of n-metal–oxide–semiconductor field-effect transistors with W × L = 0.5 × 0.1 μm 2 using random telegraph signals (RTS) techniques. RTS study of nc-Si has been performed on thin tunnel oxides from 0.8 to 2.0 nm. RTS signals were two or more levels switching events observed on the drain current of transistors with and without nc-Si. The simple two levels RTS 1 noise was observed on samples without nc-Si. On transistors with nc-Si we distinguish two different RTSs (RTS 2 and RTS 3). RTS signal variations with temperature have shown that there's three slow interfacial traps located at E c — 0.26 eV (trap1), E c — 0.23 eV (trap2) and E c — 0.2 eV (trap3). The spatial localization of traps 1, 2 and 3 from the Si–SiO 2 interface are determined using numerical simulations ( x Trap1 ≈ 0.6 nm, x Trap2 ≈ 0.8 nm and x Trap3 ≈ 0.4 nm). RTS noise observed on these devices is attributed to traps localized precisely at the interface thermal oxide/deposited control oxide. (RTS 1) noise is attributed to trap1 and (RTS 2, RTS 3) to traps 2 and 3. From RTS analysis in frequency domain, we extract the power spectrum density of the drain current noise (PSD). From these PSDs we have measured the cut-off frequencies of a single trap even at very low frequencies (for RTS 1 noise f c = 5 Hz (trap1) and for RTS 2 noise f c1 = 2 Hz (trap2), f c2 = 130 Hz (trap3)). These results are in good agreement with those obtained by analysis in time domain and confirm the localization of each trap from the Si–SiO 2 interface.
doi_str_mv 10.1016/j.msec.2007.10.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34075810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493107002135</els_id><sourcerecordid>34075810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-220dbb2989b8c492104ee07c4eafc505c11524addfb4863fd1be074abc98412f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6y8YpcwfqRxJDao4iVVYlPWluNMhKvELnYK6t_jqKxZzejOvTOaQ8gtg5IBW93vyjGhLTlAnYUSKjgjC6ZqUQBr2DlZQMNVIRvBLslVSjuAlRI1X5DNNpp9oq5DP7neWTO54KnzNLnB2dx644ONxzSZIdERxxAdJtoe6RB-qA8uIZ3Qfnr3dcBrctFnG9781SX5eH7arl-LzfvL2_pxU1gh2FRwDl3b8kY1rbKy4QwkItRWoultBZVlrOLSdF3fSrUSfcfaPJamtY2SjPdiSe5Oe_cx5LNp0qNLFofBeAyHpIWEulIMspGfjDaGlCL2eh_daOJRM9AzOL3TMzg9g5u1DC6HHk4hzC98O4w6WYfeYuci2kl3wf0X_wV4knhH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34075810</pqid></control><display><type>article</type><title>Traps identification in silicon nanocrystals memories by low noise technique</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sghaier, Ne ; Sghaier, Na ; Troudi, M. ; Militaru, L. ; Kalboussi, A. ; Souifi, A.</creator><creatorcontrib>Sghaier, Ne ; Sghaier, Na ; Troudi, M. ; Militaru, L. ; Kalboussi, A. ; Souifi, A.</creatorcontrib><description>This work reports the extraction of oxide traps properties of n-metal–oxide–semiconductor field-effect transistors with W × L = 0.5 × 0.1 μm 2 using random telegraph signals (RTS) techniques. RTS study of nc-Si has been performed on thin tunnel oxides from 0.8 to 2.0 nm. RTS signals were two or more levels switching events observed on the drain current of transistors with and without nc-Si. The simple two levels RTS 1 noise was observed on samples without nc-Si. On transistors with nc-Si we distinguish two different RTSs (RTS 2 and RTS 3). RTS signal variations with temperature have shown that there's three slow interfacial traps located at E c — 0.26 eV (trap1), E c — 0.23 eV (trap2) and E c — 0.2 eV (trap3). The spatial localization of traps 1, 2 and 3 from the Si–SiO 2 interface are determined using numerical simulations ( x Trap1 ≈ 0.6 nm, x Trap2 ≈ 0.8 nm and x Trap3 ≈ 0.4 nm). RTS noise observed on these devices is attributed to traps localized precisely at the interface thermal oxide/deposited control oxide. (RTS 1) noise is attributed to trap1 and (RTS 2, RTS 3) to traps 2 and 3. From RTS analysis in frequency domain, we extract the power spectrum density of the drain current noise (PSD). From these PSDs we have measured the cut-off frequencies of a single trap even at very low frequencies (for RTS 1 noise f c = 5 Hz (trap1) and for RTS 2 noise f c1 = 2 Hz (trap2), f c2 = 130 Hz (trap3)). These results are in good agreement with those obtained by analysis in time domain and confirm the localization of each trap from the Si–SiO 2 interface.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2007.10.050</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Deep traps ; RTS noise ; Si nanocrystals ; Si–SiO 2 interface</subject><ispartof>Materials Science &amp; Engineering C, 2008-07, Vol.28 (5), p.882-886</ispartof><rights>2007 Elsevier B.V.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-220dbb2989b8c492104ee07c4eafc505c11524addfb4863fd1be074abc98412f3</citedby><cites>FETCH-LOGICAL-c331t-220dbb2989b8c492104ee07c4eafc505c11524addfb4863fd1be074abc98412f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2007.10.050$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sghaier, Ne</creatorcontrib><creatorcontrib>Sghaier, Na</creatorcontrib><creatorcontrib>Troudi, M.</creatorcontrib><creatorcontrib>Militaru, L.</creatorcontrib><creatorcontrib>Kalboussi, A.</creatorcontrib><creatorcontrib>Souifi, A.</creatorcontrib><title>Traps identification in silicon nanocrystals memories by low noise technique</title><title>Materials Science &amp; Engineering C</title><description>This work reports the extraction of oxide traps properties of n-metal–oxide–semiconductor field-effect transistors with W × L = 0.5 × 0.1 μm 2 using random telegraph signals (RTS) techniques. RTS study of nc-Si has been performed on thin tunnel oxides from 0.8 to 2.0 nm. RTS signals were two or more levels switching events observed on the drain current of transistors with and without nc-Si. The simple two levels RTS 1 noise was observed on samples without nc-Si. On transistors with nc-Si we distinguish two different RTSs (RTS 2 and RTS 3). RTS signal variations with temperature have shown that there's three slow interfacial traps located at E c — 0.26 eV (trap1), E c — 0.23 eV (trap2) and E c — 0.2 eV (trap3). The spatial localization of traps 1, 2 and 3 from the Si–SiO 2 interface are determined using numerical simulations ( x Trap1 ≈ 0.6 nm, x Trap2 ≈ 0.8 nm and x Trap3 ≈ 0.4 nm). RTS noise observed on these devices is attributed to traps localized precisely at the interface thermal oxide/deposited control oxide. (RTS 1) noise is attributed to trap1 and (RTS 2, RTS 3) to traps 2 and 3. From RTS analysis in frequency domain, we extract the power spectrum density of the drain current noise (PSD). From these PSDs we have measured the cut-off frequencies of a single trap even at very low frequencies (for RTS 1 noise f c = 5 Hz (trap1) and for RTS 2 noise f c1 = 2 Hz (trap2), f c2 = 130 Hz (trap3)). These results are in good agreement with those obtained by analysis in time domain and confirm the localization of each trap from the Si–SiO 2 interface.</description><subject>Deep traps</subject><subject>RTS noise</subject><subject>Si nanocrystals</subject><subject>Si–SiO 2 interface</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6y8YpcwfqRxJDao4iVVYlPWluNMhKvELnYK6t_jqKxZzejOvTOaQ8gtg5IBW93vyjGhLTlAnYUSKjgjC6ZqUQBr2DlZQMNVIRvBLslVSjuAlRI1X5DNNpp9oq5DP7neWTO54KnzNLnB2dx644ONxzSZIdERxxAdJtoe6RB-qA8uIZ3Qfnr3dcBrctFnG9781SX5eH7arl-LzfvL2_pxU1gh2FRwDl3b8kY1rbKy4QwkItRWoultBZVlrOLSdF3fSrUSfcfaPJamtY2SjPdiSe5Oe_cx5LNp0qNLFofBeAyHpIWEulIMspGfjDaGlCL2eh_daOJRM9AzOL3TMzg9g5u1DC6HHk4hzC98O4w6WYfeYuci2kl3wf0X_wV4knhH</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Sghaier, Ne</creator><creator>Sghaier, Na</creator><creator>Troudi, M.</creator><creator>Militaru, L.</creator><creator>Kalboussi, A.</creator><creator>Souifi, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20080701</creationdate><title>Traps identification in silicon nanocrystals memories by low noise technique</title><author>Sghaier, Ne ; Sghaier, Na ; Troudi, M. ; Militaru, L. ; Kalboussi, A. ; Souifi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-220dbb2989b8c492104ee07c4eafc505c11524addfb4863fd1be074abc98412f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Deep traps</topic><topic>RTS noise</topic><topic>Si nanocrystals</topic><topic>Si–SiO 2 interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Sghaier, Ne</creatorcontrib><creatorcontrib>Sghaier, Na</creatorcontrib><creatorcontrib>Troudi, M.</creatorcontrib><creatorcontrib>Militaru, L.</creatorcontrib><creatorcontrib>Kalboussi, A.</creatorcontrib><creatorcontrib>Souifi, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sghaier, Ne</au><au>Sghaier, Na</au><au>Troudi, M.</au><au>Militaru, L.</au><au>Kalboussi, A.</au><au>Souifi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traps identification in silicon nanocrystals memories by low noise technique</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>28</volume><issue>5</issue><spage>882</spage><epage>886</epage><pages>882-886</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>This work reports the extraction of oxide traps properties of n-metal–oxide–semiconductor field-effect transistors with W × L = 0.5 × 0.1 μm 2 using random telegraph signals (RTS) techniques. RTS study of nc-Si has been performed on thin tunnel oxides from 0.8 to 2.0 nm. RTS signals were two or more levels switching events observed on the drain current of transistors with and without nc-Si. The simple two levels RTS 1 noise was observed on samples without nc-Si. On transistors with nc-Si we distinguish two different RTSs (RTS 2 and RTS 3). RTS signal variations with temperature have shown that there's three slow interfacial traps located at E c — 0.26 eV (trap1), E c — 0.23 eV (trap2) and E c — 0.2 eV (trap3). The spatial localization of traps 1, 2 and 3 from the Si–SiO 2 interface are determined using numerical simulations ( x Trap1 ≈ 0.6 nm, x Trap2 ≈ 0.8 nm and x Trap3 ≈ 0.4 nm). RTS noise observed on these devices is attributed to traps localized precisely at the interface thermal oxide/deposited control oxide. (RTS 1) noise is attributed to trap1 and (RTS 2, RTS 3) to traps 2 and 3. From RTS analysis in frequency domain, we extract the power spectrum density of the drain current noise (PSD). From these PSDs we have measured the cut-off frequencies of a single trap even at very low frequencies (for RTS 1 noise f c = 5 Hz (trap1) and for RTS 2 noise f c1 = 2 Hz (trap2), f c2 = 130 Hz (trap3)). These results are in good agreement with those obtained by analysis in time domain and confirm the localization of each trap from the Si–SiO 2 interface.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msec.2007.10.050</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2008-07, Vol.28 (5), p.882-886
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_miscellaneous_34075810
source Access via ScienceDirect (Elsevier)
subjects Deep traps
RTS noise
Si nanocrystals
Si–SiO 2 interface
title Traps identification in silicon nanocrystals memories by low noise technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traps%20identification%20in%20silicon%20nanocrystals%20memories%20by%20low%20noise%20technique&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Sghaier,%20Ne&rft.date=2008-07-01&rft.volume=28&rft.issue=5&rft.spage=882&rft.epage=886&rft.pages=882-886&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2007.10.050&rft_dat=%3Cproquest_cross%3E34075810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34075810&rft_id=info:pmid/&rft_els_id=S0928493107002135&rfr_iscdi=true