Solute Transport Modeling for Urban Drainage Structures

Solute transport and dispersion processes affect the performance of a wide range of water engineering structures. Some urban drainage network models transport the pollutants by advection only, whereas others also account for the effects of dispersion, although there is only limited knowledge regardi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental engineering (New York, N.Y.) N.Y.), 2008-08, Vol.134 (8), p.640-650
Hauptverfasser: Stovin, Virginia R, Grimm, John P, Lau, Shing-Tak D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 8
container_start_page 640
container_title Journal of environmental engineering (New York, N.Y.)
container_volume 134
creator Stovin, Virginia R
Grimm, John P
Lau, Shing-Tak D
description Solute transport and dispersion processes affect the performance of a wide range of water engineering structures. Some urban drainage network models transport the pollutants by advection only, whereas others also account for the effects of dispersion, although there is only limited knowledge regarding appropriate values for dispersion parameters. Computational fluid dynamics (CFD)-based software tools enable engineers to simulate flow patterns and associated pollutant transport mechanisms within both natural and engineered hydraulic structures. It is feasible to use CFD to represent solute transport using two contrasting approaches, an unsteady species (scalar) transport model or a discrete phase (Lagrangian particle tracking) model. This paper outlines these two approaches, using the example of a storage tank to demonstrate, compare, and validate the two approaches, and to explore a number of issues associated with interpretation of the simulation outputs. It is concluded that both CFD-based approaches may be usefully utilized for the design and modeling of urban drainage systems.
doi_str_mv 10.1061/(ASCE)0733-9372(2008)134:8(640)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34030368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20238583</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-d4cc902cb129bd70f092a3b878bf2b0cb901080b59de5e9c504418c0db96d4373</originalsourceid><addsrcrecordid>eNqF0DtPwzAUhmELgUQp_IcsQDsEji-J7Q5IVSkXqYih7WzZjlOlSpNiJwP_noRWHWE6y6vzSQ9C9xgeMKT4cTRdzuZj4JTGknIyIgBijCmbiFHKYHyGBlgyGnPB4RwNTt0lugphC4BZKvkA8WVdto2LVl5XYV_7JvqoM1cW1SbKax-tvdFV9Ox1UemNi5aNb23Teheu0UWuy-BujneI1i_z1ewtXny-vs-mi1gzTJs4Y9ZKINZgIk3GIQdJNDWCC5MTA9ZIwCDAJDJziZM2AcawsJAZmWaMcjpEd4e_e19_tS40alcE68pSV65ug6IMKNBU_BsSIFQkgnbh0yG0vg7Bu1ztfbHT_lthUL2sUr2s6sVUL6Z6WdXJKqE62e7B7XFJB6vLvJOzRTh9IZAkmP0OTQ5dlzm1rVtfdVKnlb9HfgDLqYoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20238583</pqid></control><display><type>article</type><title>Solute Transport Modeling for Urban Drainage Structures</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><source>Business Source Complete</source><creator>Stovin, Virginia R ; Grimm, John P ; Lau, Shing-Tak D</creator><creatorcontrib>Stovin, Virginia R ; Grimm, John P ; Lau, Shing-Tak D</creatorcontrib><description>Solute transport and dispersion processes affect the performance of a wide range of water engineering structures. Some urban drainage network models transport the pollutants by advection only, whereas others also account for the effects of dispersion, although there is only limited knowledge regarding appropriate values for dispersion parameters. Computational fluid dynamics (CFD)-based software tools enable engineers to simulate flow patterns and associated pollutant transport mechanisms within both natural and engineered hydraulic structures. It is feasible to use CFD to represent solute transport using two contrasting approaches, an unsteady species (scalar) transport model or a discrete phase (Lagrangian particle tracking) model. This paper outlines these two approaches, using the example of a storage tank to demonstrate, compare, and validate the two approaches, and to explore a number of issues associated with interpretation of the simulation outputs. It is concluded that both CFD-based approaches may be usefully utilized for the design and modeling of urban drainage systems.</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)0733-9372(2008)134:8(640)</identifier><identifier>CODEN: JOEEDU</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Exact sciences and technology ; Pollution ; Sewerage works: sewers, sewage treatment plants, outfalls ; TECHNICAL PAPERS ; Water treatment and pollution</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 2008-08, Vol.134 (8), p.640-650</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-d4cc902cb129bd70f092a3b878bf2b0cb901080b59de5e9c504418c0db96d4373</citedby><cites>FETCH-LOGICAL-a413t-d4cc902cb129bd70f092a3b878bf2b0cb901080b59de5e9c504418c0db96d4373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9372(2008)134:8(640)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372(2008)134:8(640)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,75942,75950</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20551483$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stovin, Virginia R</creatorcontrib><creatorcontrib>Grimm, John P</creatorcontrib><creatorcontrib>Lau, Shing-Tak D</creatorcontrib><title>Solute Transport Modeling for Urban Drainage Structures</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>Solute transport and dispersion processes affect the performance of a wide range of water engineering structures. Some urban drainage network models transport the pollutants by advection only, whereas others also account for the effects of dispersion, although there is only limited knowledge regarding appropriate values for dispersion parameters. Computational fluid dynamics (CFD)-based software tools enable engineers to simulate flow patterns and associated pollutant transport mechanisms within both natural and engineered hydraulic structures. It is feasible to use CFD to represent solute transport using two contrasting approaches, an unsteady species (scalar) transport model or a discrete phase (Lagrangian particle tracking) model. This paper outlines these two approaches, using the example of a storage tank to demonstrate, compare, and validate the two approaches, and to explore a number of issues associated with interpretation of the simulation outputs. It is concluded that both CFD-based approaches may be usefully utilized for the design and modeling of urban drainage systems.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Pollution</subject><subject>Sewerage works: sewers, sewage treatment plants, outfalls</subject><subject>TECHNICAL PAPERS</subject><subject>Water treatment and pollution</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUhmELgUQp_IcsQDsEji-J7Q5IVSkXqYih7WzZjlOlSpNiJwP_noRWHWE6y6vzSQ9C9xgeMKT4cTRdzuZj4JTGknIyIgBijCmbiFHKYHyGBlgyGnPB4RwNTt0lugphC4BZKvkA8WVdto2LVl5XYV_7JvqoM1cW1SbKax-tvdFV9Ox1UemNi5aNb23Teheu0UWuy-BujneI1i_z1ewtXny-vs-mi1gzTJs4Y9ZKINZgIk3GIQdJNDWCC5MTA9ZIwCDAJDJziZM2AcawsJAZmWaMcjpEd4e_e19_tS40alcE68pSV65ug6IMKNBU_BsSIFQkgnbh0yG0vg7Bu1ztfbHT_lthUL2sUr2s6sVUL6Z6WdXJKqE62e7B7XFJB6vLvJOzRTh9IZAkmP0OTQ5dlzm1rVtfdVKnlb9HfgDLqYoY</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Stovin, Virginia R</creator><creator>Grimm, John P</creator><creator>Lau, Shing-Tak D</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>F28</scope><scope>KR7</scope></search><sort><creationdate>20080801</creationdate><title>Solute Transport Modeling for Urban Drainage Structures</title><author>Stovin, Virginia R ; Grimm, John P ; Lau, Shing-Tak D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-d4cc902cb129bd70f092a3b878bf2b0cb901080b59de5e9c504418c0db96d4373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Pollution</topic><topic>Sewerage works: sewers, sewage treatment plants, outfalls</topic><topic>TECHNICAL PAPERS</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stovin, Virginia R</creatorcontrib><creatorcontrib>Grimm, John P</creatorcontrib><creatorcontrib>Lau, Shing-Tak D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stovin, Virginia R</au><au>Grimm, John P</au><au>Lau, Shing-Tak D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solute Transport Modeling for Urban Drainage Structures</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>134</volume><issue>8</issue><spage>640</spage><epage>650</epage><pages>640-650</pages><issn>0733-9372</issn><eissn>1943-7870</eissn><coden>JOEEDU</coden><abstract>Solute transport and dispersion processes affect the performance of a wide range of water engineering structures. Some urban drainage network models transport the pollutants by advection only, whereas others also account for the effects of dispersion, although there is only limited knowledge regarding appropriate values for dispersion parameters. Computational fluid dynamics (CFD)-based software tools enable engineers to simulate flow patterns and associated pollutant transport mechanisms within both natural and engineered hydraulic structures. It is feasible to use CFD to represent solute transport using two contrasting approaches, an unsteady species (scalar) transport model or a discrete phase (Lagrangian particle tracking) model. This paper outlines these two approaches, using the example of a storage tank to demonstrate, compare, and validate the two approaches, and to explore a number of issues associated with interpretation of the simulation outputs. It is concluded that both CFD-based approaches may be usefully utilized for the design and modeling of urban drainage systems.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9372(2008)134:8(640)</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9372
ispartof Journal of environmental engineering (New York, N.Y.), 2008-08, Vol.134 (8), p.640-650
issn 0733-9372
1943-7870
language eng
recordid cdi_proquest_miscellaneous_34030368
source American Society of Civil Engineers:NESLI2:Journals:2014; Business Source Complete
subjects Applied sciences
Exact sciences and technology
Pollution
Sewerage works: sewers, sewage treatment plants, outfalls
TECHNICAL PAPERS
Water treatment and pollution
title Solute Transport Modeling for Urban Drainage Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solute%20Transport%20Modeling%20for%20Urban%20Drainage%20Structures&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Stovin,%20Virginia%20R&rft.date=2008-08-01&rft.volume=134&rft.issue=8&rft.spage=640&rft.epage=650&rft.pages=640-650&rft.issn=0733-9372&rft.eissn=1943-7870&rft.coden=JOEEDU&rft_id=info:doi/10.1061/(ASCE)0733-9372(2008)134:8(640)&rft_dat=%3Cproquest_cross%3E20238583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20238583&rft_id=info:pmid/&rfr_iscdi=true