Quantifying deformation and energy dissipation of polymeric surfaces under localized impact
The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resis...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-08, Vol.489 (1), p.403-412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 1 |
container_start_page | 403 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 489 |
creator | Constantinides, Georgios Tweedie, Catherine A. Holbrook, Doria M. Barragan, Patrick Smith, James F. Van Vliet1, Krystyn J. |
description | The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5
mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature
T
g
, and four fully amorphous polymers characterized well below
T
g
– polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite
® (LU) and Plexiglas
® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution
e
. This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through
T
g
, as demonstrated for PS and PC over the range of 20–180
°
C. |
doi_str_mv | 10.1016/j.msea.2007.12.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33992709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308000099</els_id><sourcerecordid>33992709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-182cab71204d82bd5aaae0064e8bd9600347481c3332a2eace1ccfee8001275a3</originalsourceid><addsrcrecordid>eNp9UEtrGzEQFqGBuE7_QE-6tLfdjKT1PqCXEvIoGEKhOeUgxtKskdmVttJuwf31lbHJsaeB4Xsz9llAKUDUd4dyTISlBGhKIUuoqiu2Em2jiqpT9Qe2gk6KYgOdumEfUzoAgKhgs2JvPxf0s-uPzu-5pT7EEWcXPEdvOXmK-yO3LiU3nd-h51MYjiNFZ3haYo-GEl-8pciHYHBwf8lyN05o5lt23eOQ6NPlrtnr48Ov--di-_L04_77tjCqFnMhWmlw1wgJlW3lzm4QkQDqitqd7WoAVTVVK4xSSqKkbCiM6Yna3EE2G1Rr9vWsO8Xwe6E069ElQ8OAnsKStFJdJ5vcfc3kGWhiSClSr6foRoxHLUCfdtQHfdpRn3bUQuq8YyZ9uahjyv36iN649M7Mqdsc74T7dsZRrvrHUdTJOPKGrItkZm2D-5_NP57Qiqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33992709</pqid></control><display><type>article</type><title>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Constantinides, Georgios ; Tweedie, Catherine A. ; Holbrook, Doria M. ; Barragan, Patrick ; Smith, James F. ; Van Vliet1, Krystyn J.</creator><creatorcontrib>Constantinides, Georgios ; Tweedie, Catherine A. ; Holbrook, Doria M. ; Barragan, Patrick ; Smith, James F. ; Van Vliet1, Krystyn J.</creatorcontrib><description>The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5
mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature
T
g
, and four fully amorphous polymers characterized well below
T
g
– polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite
® (LU) and Plexiglas
® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution
e
. This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through
T
g
, as demonstrated for PS and PC over the range of 20–180
°
C.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2007.12.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Impact ; Mechanical properties ; Nanoindentation ; Physical properties ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Technology of polymers</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-08, Vol.489 (1), p.403-412</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-182cab71204d82bd5aaae0064e8bd9600347481c3332a2eace1ccfee8001275a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2007.12.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20487484$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantinides, Georgios</creatorcontrib><creatorcontrib>Tweedie, Catherine A.</creatorcontrib><creatorcontrib>Holbrook, Doria M.</creatorcontrib><creatorcontrib>Barragan, Patrick</creatorcontrib><creatorcontrib>Smith, James F.</creatorcontrib><creatorcontrib>Van Vliet1, Krystyn J.</creatorcontrib><title>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5
mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature
T
g
, and four fully amorphous polymers characterized well below
T
g
– polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite
® (LU) and Plexiglas
® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution
e
. This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through
T
g
, as demonstrated for PS and PC over the range of 20–180
°
C.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Impact</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Physical properties</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Technology of polymers</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UEtrGzEQFqGBuE7_QE-6tLfdjKT1PqCXEvIoGEKhOeUgxtKskdmVttJuwf31lbHJsaeB4Xsz9llAKUDUd4dyTISlBGhKIUuoqiu2Em2jiqpT9Qe2gk6KYgOdumEfUzoAgKhgs2JvPxf0s-uPzu-5pT7EEWcXPEdvOXmK-yO3LiU3nd-h51MYjiNFZ3haYo-GEl-8pciHYHBwf8lyN05o5lt23eOQ6NPlrtnr48Ov--di-_L04_77tjCqFnMhWmlw1wgJlW3lzm4QkQDqitqd7WoAVTVVK4xSSqKkbCiM6Yna3EE2G1Rr9vWsO8Xwe6E069ElQ8OAnsKStFJdJ5vcfc3kGWhiSClSr6foRoxHLUCfdtQHfdpRn3bUQuq8YyZ9uahjyv36iN649M7Mqdsc74T7dsZRrvrHUdTJOPKGrItkZm2D-5_NP57Qiqc</recordid><startdate>20080820</startdate><enddate>20080820</enddate><creator>Constantinides, Georgios</creator><creator>Tweedie, Catherine A.</creator><creator>Holbrook, Doria M.</creator><creator>Barragan, Patrick</creator><creator>Smith, James F.</creator><creator>Van Vliet1, Krystyn J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080820</creationdate><title>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</title><author>Constantinides, Georgios ; Tweedie, Catherine A. ; Holbrook, Doria M. ; Barragan, Patrick ; Smith, James F. ; Van Vliet1, Krystyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-182cab71204d82bd5aaae0064e8bd9600347481c3332a2eace1ccfee8001275a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Impact</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Physical properties</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantinides, Georgios</creatorcontrib><creatorcontrib>Tweedie, Catherine A.</creatorcontrib><creatorcontrib>Holbrook, Doria M.</creatorcontrib><creatorcontrib>Barragan, Patrick</creatorcontrib><creatorcontrib>Smith, James F.</creatorcontrib><creatorcontrib>Van Vliet1, Krystyn J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantinides, Georgios</au><au>Tweedie, Catherine A.</au><au>Holbrook, Doria M.</au><au>Barragan, Patrick</au><au>Smith, James F.</au><au>Van Vliet1, Krystyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2008-08-20</date><risdate>2008</risdate><volume>489</volume><issue>1</issue><spage>403</spage><epage>412</epage><pages>403-412</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5
mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature
T
g
, and four fully amorphous polymers characterized well below
T
g
– polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite
® (LU) and Plexiglas
® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution
e
. This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through
T
g
, as demonstrated for PS and PC over the range of 20–180
°
C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2007.12.044</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-08, Vol.489 (1), p.403-412 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_33992709 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Exact sciences and technology Impact Mechanical properties Nanoindentation Physical properties Polymer industry, paints, wood Polymers Properties and testing Technology of polymers |
title | Quantifying deformation and energy dissipation of polymeric surfaces under localized impact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20deformation%20and%20energy%20dissipation%20of%20polymeric%20surfaces%20under%20localized%20impact&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Constantinides,%20Georgios&rft.date=2008-08-20&rft.volume=489&rft.issue=1&rft.spage=403&rft.epage=412&rft.pages=403-412&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2007.12.044&rft_dat=%3Cproquest_cross%3E33992709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33992709&rft_id=info:pmid/&rft_els_id=S0921509308000099&rfr_iscdi=true |