Quantifying deformation and energy dissipation of polymeric surfaces under localized impact

The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-08, Vol.489 (1), p.403-412
Hauptverfasser: Constantinides, Georgios, Tweedie, Catherine A., Holbrook, Doria M., Barragan, Patrick, Smith, James F., Van Vliet1, Krystyn J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 1
container_start_page 403
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 489
creator Constantinides, Georgios
Tweedie, Catherine A.
Holbrook, Doria M.
Barragan, Patrick
Smith, James F.
Van Vliet1, Krystyn J.
description The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5 mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature T g , and four fully amorphous polymers characterized well below T g – polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite ® (LU) and Plexiglas ® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution e . This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through T g , as demonstrated for PS and PC over the range of 20–180 ° C.
doi_str_mv 10.1016/j.msea.2007.12.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33992709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308000099</els_id><sourcerecordid>33992709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-182cab71204d82bd5aaae0064e8bd9600347481c3332a2eace1ccfee8001275a3</originalsourceid><addsrcrecordid>eNp9UEtrGzEQFqGBuE7_QE-6tLfdjKT1PqCXEvIoGEKhOeUgxtKskdmVttJuwf31lbHJsaeB4Xsz9llAKUDUd4dyTISlBGhKIUuoqiu2Em2jiqpT9Qe2gk6KYgOdumEfUzoAgKhgs2JvPxf0s-uPzu-5pT7EEWcXPEdvOXmK-yO3LiU3nd-h51MYjiNFZ3haYo-GEl-8pciHYHBwf8lyN05o5lt23eOQ6NPlrtnr48Ov--di-_L04_77tjCqFnMhWmlw1wgJlW3lzm4QkQDqitqd7WoAVTVVK4xSSqKkbCiM6Yna3EE2G1Rr9vWsO8Xwe6E069ElQ8OAnsKStFJdJ5vcfc3kGWhiSClSr6foRoxHLUCfdtQHfdpRn3bUQuq8YyZ9uahjyv36iN649M7Mqdsc74T7dsZRrvrHUdTJOPKGrItkZm2D-5_NP57Qiqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33992709</pqid></control><display><type>article</type><title>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Constantinides, Georgios ; Tweedie, Catherine A. ; Holbrook, Doria M. ; Barragan, Patrick ; Smith, James F. ; Van Vliet1, Krystyn J.</creator><creatorcontrib>Constantinides, Georgios ; Tweedie, Catherine A. ; Holbrook, Doria M. ; Barragan, Patrick ; Smith, James F. ; Van Vliet1, Krystyn J.</creatorcontrib><description>The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5 mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature T g , and four fully amorphous polymers characterized well below T g – polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite ® (LU) and Plexiglas ® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution e . This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through T g , as demonstrated for PS and PC over the range of 20–180 ° C.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2007.12.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Impact ; Mechanical properties ; Nanoindentation ; Physical properties ; Polymer industry, paints, wood ; Polymers ; Properties and testing ; Technology of polymers</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2008-08, Vol.489 (1), p.403-412</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-182cab71204d82bd5aaae0064e8bd9600347481c3332a2eace1ccfee8001275a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2007.12.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20487484$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Constantinides, Georgios</creatorcontrib><creatorcontrib>Tweedie, Catherine A.</creatorcontrib><creatorcontrib>Holbrook, Doria M.</creatorcontrib><creatorcontrib>Barragan, Patrick</creatorcontrib><creatorcontrib>Smith, James F.</creatorcontrib><creatorcontrib>Van Vliet1, Krystyn J.</creatorcontrib><title>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5 mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature T g , and four fully amorphous polymers characterized well below T g – polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite ® (LU) and Plexiglas ® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution e . This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through T g , as demonstrated for PS and PC over the range of 20–180 ° C.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Impact</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Physical properties</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties and testing</subject><subject>Technology of polymers</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UEtrGzEQFqGBuE7_QE-6tLfdjKT1PqCXEvIoGEKhOeUgxtKskdmVttJuwf31lbHJsaeB4Xsz9llAKUDUd4dyTISlBGhKIUuoqiu2Em2jiqpT9Qe2gk6KYgOdumEfUzoAgKhgs2JvPxf0s-uPzu-5pT7EEWcXPEdvOXmK-yO3LiU3nd-h51MYjiNFZ3haYo-GEl-8pciHYHBwf8lyN05o5lt23eOQ6NPlrtnr48Ov--di-_L04_77tjCqFnMhWmlw1wgJlW3lzm4QkQDqitqd7WoAVTVVK4xSSqKkbCiM6Yna3EE2G1Rr9vWsO8Xwe6E069ElQ8OAnsKStFJdJ5vcfc3kGWhiSClSr6foRoxHLUCfdtQHfdpRn3bUQuq8YyZ9uahjyv36iN649M7Mqdsc74T7dsZRrvrHUdTJOPKGrItkZm2D-5_NP57Qiqc</recordid><startdate>20080820</startdate><enddate>20080820</enddate><creator>Constantinides, Georgios</creator><creator>Tweedie, Catherine A.</creator><creator>Holbrook, Doria M.</creator><creator>Barragan, Patrick</creator><creator>Smith, James F.</creator><creator>Van Vliet1, Krystyn J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080820</creationdate><title>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</title><author>Constantinides, Georgios ; Tweedie, Catherine A. ; Holbrook, Doria M. ; Barragan, Patrick ; Smith, James F. ; Van Vliet1, Krystyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-182cab71204d82bd5aaae0064e8bd9600347481c3332a2eace1ccfee8001275a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Impact</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Physical properties</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties and testing</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantinides, Georgios</creatorcontrib><creatorcontrib>Tweedie, Catherine A.</creatorcontrib><creatorcontrib>Holbrook, Doria M.</creatorcontrib><creatorcontrib>Barragan, Patrick</creatorcontrib><creatorcontrib>Smith, James F.</creatorcontrib><creatorcontrib>Van Vliet1, Krystyn J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantinides, Georgios</au><au>Tweedie, Catherine A.</au><au>Holbrook, Doria M.</au><au>Barragan, Patrick</au><au>Smith, James F.</au><au>Van Vliet1, Krystyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying deformation and energy dissipation of polymeric surfaces under localized impact</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2008-08-20</date><risdate>2008</risdate><volume>489</volume><issue>1</issue><spage>403</spage><epage>412</epage><pages>403-412</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The mechanical response of polymeric surfaces to concentrated impact loads is relevant to a range of applications, but cannot be inferred from quasistatic or oscillatory contact loading. Here we propose and demonstrate a set of quantitative metrics that characterizes the ability of polymers to resist impact deformation and dissipate impact energy, as well as the strain rate sensitivity of these materials to contact loading. A model which incorporates nonlinear material behavior is presented and can predict the experimentally observed deformation behavior with high accuracy. The micrometer-scale impact response of several polymers has been investigated in the velocity range of 0.7–1.5 mm/s. Two semi-crystalline polymers – polyethylene (PE) and polypropylene (PP) – characterized above the corresponding glass transition temperature T g , and four fully amorphous polymers characterized well below T g – polystyrene (PS), polycarbonate (PC), and low and high molecular weight poly(methyl methacrylate) or PMMA termed commercially as Lucite ® (LU) and Plexiglas ® (PL) – have been considered. In an inverse application, the model and experimental method provide a tool for extracting the relevant material quantities, including energy dissipation metrics such as the coefficient of restitution e . This approach can be used to determine quantitatively the impact energy absorption of polymer surfaces at elevated temperatures through T g , as demonstrated for PS and PC over the range of 20–180 ° C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2007.12.044</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2008-08, Vol.489 (1), p.403-412
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_33992709
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Exact sciences and technology
Impact
Mechanical properties
Nanoindentation
Physical properties
Polymer industry, paints, wood
Polymers
Properties and testing
Technology of polymers
title Quantifying deformation and energy dissipation of polymeric surfaces under localized impact
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20deformation%20and%20energy%20dissipation%20of%20polymeric%20surfaces%20under%20localized%20impact&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Constantinides,%20Georgios&rft.date=2008-08-20&rft.volume=489&rft.issue=1&rft.spage=403&rft.epage=412&rft.pages=403-412&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2007.12.044&rft_dat=%3Cproquest_cross%3E33992709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33992709&rft_id=info:pmid/&rft_els_id=S0921509308000099&rfr_iscdi=true