Stability of an integro-differential equation
In this work we study a scalar integro-differential equation and give some new conditions ensuring that the zero solution is asymptotically stable by means of the fixed-point theory. Our work extends and improves the results in the literature.
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2009-04, Vol.57 (7), p.1080-1088 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1088 |
---|---|
container_issue | 7 |
container_start_page | 1080 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 57 |
creator | Jin, Chuhua Luo, Jiaowan |
description | In this work we study a scalar integro-differential equation and give some new conditions ensuring that the zero solution is asymptotically stable by means of the fixed-point theory. Our work extends and improves the results in the literature. |
doi_str_mv | 10.1016/j.camwa.2009.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33913854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122109000224</els_id><sourcerecordid>33913854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-a7db187f20b60ee1e0038899a7d3b4b90a339ed5a60b398edda4f5b6fecbd3013</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwC1gyIZaEs524zsCAKr6kSgzAbNnOGblKk9Z2Qf33uJS5k6XTe3fyI-SaQkWBirtlZfXqR1cMoK2AVgDihEyonPFyJoQ8JROQrSwpY_ScXMS4BICaM5iQ8j1p43ufdsXoCj0Ufkj4Fcay885hwCF53Re42erkx-GSnDndR7z6f6fk8-nxY_5SLt6eX-cPi9LWlKVSzzqTjzsGRgAiRQAuZdvmOTe1aUFz3mLXaAGGtxK7TteuMcKhNR0Hyqfk5rB3HcbNFmNSKx8t9r0ecNxGlXXKZVNn8PYoSEEyBrVoZEb5AbVhjDGgU-vgVzrsMqT2FdVS_VVU-4oKqMoVs3V_sDB_99tjUNF6HCx2PqBNqhv9Uf8XCpJ7ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204658</pqid></control><display><type>article</type><title>Stability of an integro-differential equation</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jin, Chuhua ; Luo, Jiaowan</creator><creatorcontrib>Jin, Chuhua ; Luo, Jiaowan</creatorcontrib><description>In this work we study a scalar integro-differential equation and give some new conditions ensuring that the zero solution is asymptotically stable by means of the fixed-point theory. Our work extends and improves the results in the literature.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2009.01.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Asymptotic properties ; Contraction ; Fixed points ; Integro-differential equation ; Mathematical analysis ; Mathematical models ; Scalars ; Stability ; Variable delay</subject><ispartof>Computers & mathematics with applications (1987), 2009-04, Vol.57 (7), p.1080-1088</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-a7db187f20b60ee1e0038899a7d3b4b90a339ed5a60b398edda4f5b6fecbd3013</citedby><cites>FETCH-LOGICAL-c412t-a7db187f20b60ee1e0038899a7d3b4b90a339ed5a60b398edda4f5b6fecbd3013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2009.01.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Jin, Chuhua</creatorcontrib><creatorcontrib>Luo, Jiaowan</creatorcontrib><title>Stability of an integro-differential equation</title><title>Computers & mathematics with applications (1987)</title><description>In this work we study a scalar integro-differential equation and give some new conditions ensuring that the zero solution is asymptotically stable by means of the fixed-point theory. Our work extends and improves the results in the literature.</description><subject>Asymptotic properties</subject><subject>Contraction</subject><subject>Fixed points</subject><subject>Integro-differential equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Scalars</subject><subject>Stability</subject><subject>Variable delay</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwC1gyIZaEs524zsCAKr6kSgzAbNnOGblKk9Z2Qf33uJS5k6XTe3fyI-SaQkWBirtlZfXqR1cMoK2AVgDihEyonPFyJoQ8JROQrSwpY_ScXMS4BICaM5iQ8j1p43ufdsXoCj0Ufkj4Fcay885hwCF53Re42erkx-GSnDndR7z6f6fk8-nxY_5SLt6eX-cPi9LWlKVSzzqTjzsGRgAiRQAuZdvmOTe1aUFz3mLXaAGGtxK7TteuMcKhNR0Hyqfk5rB3HcbNFmNSKx8t9r0ecNxGlXXKZVNn8PYoSEEyBrVoZEb5AbVhjDGgU-vgVzrsMqT2FdVS_VVU-4oKqMoVs3V_sDB_99tjUNF6HCx2PqBNqhv9Uf8XCpJ7ew</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Jin, Chuhua</creator><creator>Luo, Jiaowan</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Stability of an integro-differential equation</title><author>Jin, Chuhua ; Luo, Jiaowan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-a7db187f20b60ee1e0038899a7d3b4b90a339ed5a60b398edda4f5b6fecbd3013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asymptotic properties</topic><topic>Contraction</topic><topic>Fixed points</topic><topic>Integro-differential equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Scalars</topic><topic>Stability</topic><topic>Variable delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Chuhua</creatorcontrib><creatorcontrib>Luo, Jiaowan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Chuhua</au><au>Luo, Jiaowan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of an integro-differential equation</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>57</volume><issue>7</issue><spage>1080</spage><epage>1088</epage><pages>1080-1088</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this work we study a scalar integro-differential equation and give some new conditions ensuring that the zero solution is asymptotically stable by means of the fixed-point theory. Our work extends and improves the results in the literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2009.01.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2009-04, Vol.57 (7), p.1080-1088 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_33913854 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Asymptotic properties Contraction Fixed points Integro-differential equation Mathematical analysis Mathematical models Scalars Stability Variable delay |
title | Stability of an integro-differential equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20an%20integro-differential%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Jin,%20Chuhua&rft.date=2009-04-01&rft.volume=57&rft.issue=7&rft.spage=1080&rft.epage=1088&rft.pages=1080-1088&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2009.01.006&rft_dat=%3Cproquest_cross%3E33913854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082204658&rft_id=info:pmid/&rft_els_id=S0898122109000224&rfr_iscdi=true |