Analytical Computation of Leading-Edge Truncation Effects on Inviscid Busemann-Inlet Performance

An approach is presented to analytically predict the conservation-averaged inviscid Busemann-inlet performance properties at the throat, accounting for the effect of leading-edge truncation. A control volume is drawn such that the calculation of throat-inlet performance relies on the accurate predic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2008-07, Vol.24 (4), p.655-661
Hauptverfasser: O'brien, Timothy F, Colville, Jesse R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue 4
container_start_page 655
container_title Journal of propulsion and power
container_volume 24
creator O'brien, Timothy F
Colville, Jesse R
description An approach is presented to analytically predict the conservation-averaged inviscid Busemann-inlet performance properties at the throat, accounting for the effect of leading-edge truncation. A control volume is drawn such that the calculation of throat-inlet performance relies on the accurate prediction of the pressure integral along the surface. The pressure integral is predicted by assuming a leading-edge total pressure loss and a Mach number distribution similar to a nontruncated Busemann inlet. The resulting surface profiles can also be used to predict the bow and terminating shock wave shapes. The pressure-integral-prediction approach is compared with a set of inviscid axisymmetric computational fluid dynamics solutions on the same geometries. The comparisons show that the pressure-integral-prediction approach compares favorably with the computational fluid dynamics solutions for inlets with a moderate contraction ratio and truncation angles no greater than 5 deg.
doi_str_mv 10.2514/1.30178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33895302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313016928</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-e142fe249fe12051d27926bd5e55a67b2985568ecf164fc8319e5108557824243</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouH7gXygoiodqvpse12XVhQU96DnGdiJd2nRNUnH_vdEKgnqaYd6Hl-FB6IjgCyoIvyQXDJNCbaEJEYzlTBVyG01wwVXOpVC7aC-EFcZEKllM0NPUmXYTm8q02azv1kM0seld1ttsCaZu3Es-r18ge_CDq8Zobi1UMWRpXbi3JlRNnV0NATrjXL5wLcTsHrztfTpUcIB2rGkDHH7PffR4PX-Y3ebLu5vFbLrMDeNFzIFwaoHy0gKhWJCaFiWVz7UAIYwsnmmphJAKKkskt5VipARBcDoWinLK2T46HXvXvn8dIETdpdegbY2DfgiaMVUKhmkCj3-Bq37wyULQlJHkTpZUJepspCrfh-DB6rVvOuM3mmD96VkT_eU5kScjaRpjfrr-Yuf_YmOs17XVdmjbCO-RfQBi6Yeh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313016928</pqid></control><display><type>article</type><title>Analytical Computation of Leading-Edge Truncation Effects on Inviscid Busemann-Inlet Performance</title><source>Alma/SFX Local Collection</source><creator>O'brien, Timothy F ; Colville, Jesse R</creator><creatorcontrib>O'brien, Timothy F ; Colville, Jesse R</creatorcontrib><description>An approach is presented to analytically predict the conservation-averaged inviscid Busemann-inlet performance properties at the throat, accounting for the effect of leading-edge truncation. A control volume is drawn such that the calculation of throat-inlet performance relies on the accurate prediction of the pressure integral along the surface. The pressure integral is predicted by assuming a leading-edge total pressure loss and a Mach number distribution similar to a nontruncated Busemann inlet. The resulting surface profiles can also be used to predict the bow and terminating shock wave shapes. The pressure-integral-prediction approach is compared with a set of inviscid axisymmetric computational fluid dynamics solutions on the same geometries. The comparisons show that the pressure-integral-prediction approach compares favorably with the computational fluid dynamics solutions for inlets with a moderate contraction ratio and truncation angles no greater than 5 deg.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.30178</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><ispartof>Journal of propulsion and power, 2008-07, Vol.24 (4), p.655-661</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Jul/Aug 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-e142fe249fe12051d27926bd5e55a67b2985568ecf164fc8319e5108557824243</citedby><cites>FETCH-LOGICAL-a347t-e142fe249fe12051d27926bd5e55a67b2985568ecf164fc8319e5108557824243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>O'brien, Timothy F</creatorcontrib><creatorcontrib>Colville, Jesse R</creatorcontrib><title>Analytical Computation of Leading-Edge Truncation Effects on Inviscid Busemann-Inlet Performance</title><title>Journal of propulsion and power</title><description>An approach is presented to analytically predict the conservation-averaged inviscid Busemann-inlet performance properties at the throat, accounting for the effect of leading-edge truncation. A control volume is drawn such that the calculation of throat-inlet performance relies on the accurate prediction of the pressure integral along the surface. The pressure integral is predicted by assuming a leading-edge total pressure loss and a Mach number distribution similar to a nontruncated Busemann inlet. The resulting surface profiles can also be used to predict the bow and terminating shock wave shapes. The pressure-integral-prediction approach is compared with a set of inviscid axisymmetric computational fluid dynamics solutions on the same geometries. The comparisons show that the pressure-integral-prediction approach compares favorably with the computational fluid dynamics solutions for inlets with a moderate contraction ratio and truncation angles no greater than 5 deg.</description><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMouH7gXygoiodqvpse12XVhQU96DnGdiJd2nRNUnH_vdEKgnqaYd6Hl-FB6IjgCyoIvyQXDJNCbaEJEYzlTBVyG01wwVXOpVC7aC-EFcZEKllM0NPUmXYTm8q02azv1kM0seld1ttsCaZu3Es-r18ge_CDq8Zobi1UMWRpXbi3JlRNnV0NATrjXL5wLcTsHrztfTpUcIB2rGkDHH7PffR4PX-Y3ebLu5vFbLrMDeNFzIFwaoHy0gKhWJCaFiWVz7UAIYwsnmmphJAKKkskt5VipARBcDoWinLK2T46HXvXvn8dIETdpdegbY2DfgiaMVUKhmkCj3-Bq37wyULQlJHkTpZUJepspCrfh-DB6rVvOuM3mmD96VkT_eU5kScjaRpjfrr-Yuf_YmOs17XVdmjbCO-RfQBi6Yeh</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>O'brien, Timothy F</creator><creator>Colville, Jesse R</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20080701</creationdate><title>Analytical Computation of Leading-Edge Truncation Effects on Inviscid Busemann-Inlet Performance</title><author>O'brien, Timothy F ; Colville, Jesse R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-e142fe249fe12051d27926bd5e55a67b2985568ecf164fc8319e5108557824243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'brien, Timothy F</creatorcontrib><creatorcontrib>Colville, Jesse R</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'brien, Timothy F</au><au>Colville, Jesse R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Computation of Leading-Edge Truncation Effects on Inviscid Busemann-Inlet Performance</atitle><jtitle>Journal of propulsion and power</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>24</volume><issue>4</issue><spage>655</spage><epage>661</epage><pages>655-661</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><abstract>An approach is presented to analytically predict the conservation-averaged inviscid Busemann-inlet performance properties at the throat, accounting for the effect of leading-edge truncation. A control volume is drawn such that the calculation of throat-inlet performance relies on the accurate prediction of the pressure integral along the surface. The pressure integral is predicted by assuming a leading-edge total pressure loss and a Mach number distribution similar to a nontruncated Busemann inlet. The resulting surface profiles can also be used to predict the bow and terminating shock wave shapes. The pressure-integral-prediction approach is compared with a set of inviscid axisymmetric computational fluid dynamics solutions on the same geometries. The comparisons show that the pressure-integral-prediction approach compares favorably with the computational fluid dynamics solutions for inlets with a moderate contraction ratio and truncation angles no greater than 5 deg.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.30178</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2008-07, Vol.24 (4), p.655-661
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_miscellaneous_33895302
source Alma/SFX Local Collection
title Analytical Computation of Leading-Edge Truncation Effects on Inviscid Busemann-Inlet Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Computation%20of%20Leading-Edge%20Truncation%20Effects%20on%20Inviscid%20Busemann-Inlet%20Performance&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=O'brien,%20Timothy%20F&rft.date=2008-07-01&rft.volume=24&rft.issue=4&rft.spage=655&rft.epage=661&rft.pages=655-661&rft.issn=0748-4658&rft.eissn=1533-3876&rft_id=info:doi/10.2514/1.30178&rft_dat=%3Cproquest_cross%3E2313016928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313016928&rft_id=info:pmid/&rfr_iscdi=true