Predicting thermal instability in a closed loop pulsating heat pipe system
Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2009-06, Vol.29 (8), p.1566-1576 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1576 |
---|---|
container_issue | 8 |
container_start_page | 1566 |
container_title | Applied thermal engineering |
container_volume | 29 |
creator | Chen, Ping-Hei Lee, Ya-Wei Chang, Tien-Li |
description | Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP. |
doi_str_mv | 10.1016/j.applthermaleng.2008.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33843991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431108003098</els_id><sourcerecordid>33843991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhj2ARCn8Bw_A1mDHceJILKiifKgSDDBbtnNpXTkf2C5S_z0urZDYmO4dnrtX9yB0RUlGCS1vN5kaRxfX4DvloF9lOSEiI1VGSHWCJpTxelYwSs_QeQgbQmguqmKCXt48NNZE26_wcRnbPkSlrbNxlzJW2LghQIPdMIx43LqgfvA1qIhHOwIOuxChu0CnrXIBLo9zij4WD-_zp9ny9fF5fr-cmaLgccZ5K0AVdVlS1mhOWt00hpVa60aTQnHWipyrRFHRaFEyknMGtS4pESnXik3RzeHu6IfPLYQoOxsMOKd6GLZBMiYKVtc0gXcH0PghBA-tHL3tlN9JSuRemtzIv9LkXpoklUzS0vr1sUcFo1zrVW9s-L2RJ4M1K_fc4sBBevrLgpfBWOhN8urBRNkM9n-F34vJjmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33843991</pqid></control><display><type>article</type><title>Predicting thermal instability in a closed loop pulsating heat pipe system</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Ping-Hei ; Lee, Ya-Wei ; Chang, Tien-Li</creator><creatorcontrib>Chen, Ping-Hei ; Lee, Ya-Wei ; Chang, Tien-Li</creatorcontrib><description>Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2008.07.007</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; MISO ; NARMAX ; Pulsating heat pipe ; Theoretical studies. Data and constants. Metering ; Two-phase flow</subject><ispartof>Applied thermal engineering, 2009-06, Vol.29 (8), p.1566-1576</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</citedby><cites>FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431108003098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21289367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ping-Hei</creatorcontrib><creatorcontrib>Lee, Ya-Wei</creatorcontrib><creatorcontrib>Chang, Tien-Li</creatorcontrib><title>Predicting thermal instability in a closed loop pulsating heat pipe system</title><title>Applied thermal engineering</title><description>Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP.</description><subject>Applied sciences</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>MISO</subject><subject>NARMAX</subject><subject>Pulsating heat pipe</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Two-phase flow</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhj2ARCn8Bw_A1mDHceJILKiifKgSDDBbtnNpXTkf2C5S_z0urZDYmO4dnrtX9yB0RUlGCS1vN5kaRxfX4DvloF9lOSEiI1VGSHWCJpTxelYwSs_QeQgbQmguqmKCXt48NNZE26_wcRnbPkSlrbNxlzJW2LghQIPdMIx43LqgfvA1qIhHOwIOuxChu0CnrXIBLo9zij4WD-_zp9ny9fF5fr-cmaLgccZ5K0AVdVlS1mhOWt00hpVa60aTQnHWipyrRFHRaFEyknMGtS4pESnXik3RzeHu6IfPLYQoOxsMOKd6GLZBMiYKVtc0gXcH0PghBA-tHL3tlN9JSuRemtzIv9LkXpoklUzS0vr1sUcFo1zrVW9s-L2RJ4M1K_fc4sBBevrLgpfBWOhN8urBRNkM9n-F34vJjmA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Chen, Ping-Hei</creator><creator>Lee, Ya-Wei</creator><creator>Chang, Tien-Li</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090601</creationdate><title>Predicting thermal instability in a closed loop pulsating heat pipe system</title><author>Chen, Ping-Hei ; Lee, Ya-Wei ; Chang, Tien-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>MISO</topic><topic>NARMAX</topic><topic>Pulsating heat pipe</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ping-Hei</creatorcontrib><creatorcontrib>Lee, Ya-Wei</creatorcontrib><creatorcontrib>Chang, Tien-Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ping-Hei</au><au>Lee, Ya-Wei</au><au>Chang, Tien-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting thermal instability in a closed loop pulsating heat pipe system</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>29</volume><issue>8</issue><spage>1566</spage><epage>1576</epage><pages>1566-1576</pages><issn>1359-4311</issn><abstract>Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2008.07.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2009-06, Vol.29 (8), p.1566-1576 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_33843991 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Heat exchangers (included heat transformers, condensers, cooling towers) Heat transfer MISO NARMAX Pulsating heat pipe Theoretical studies. Data and constants. Metering Two-phase flow |
title | Predicting thermal instability in a closed loop pulsating heat pipe system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20thermal%20instability%20in%20a%20closed%20loop%20pulsating%20heat%20pipe%20system&rft.jtitle=Applied%20thermal%20engineering&rft.au=Chen,%20Ping-Hei&rft.date=2009-06-01&rft.volume=29&rft.issue=8&rft.spage=1566&rft.epage=1576&rft.pages=1566-1576&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2008.07.007&rft_dat=%3Cproquest_cross%3E33843991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33843991&rft_id=info:pmid/&rft_els_id=S1359431108003098&rfr_iscdi=true |