Predicting thermal instability in a closed loop pulsating heat pipe system

Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2009-06, Vol.29 (8), p.1566-1576
Hauptverfasser: Chen, Ping-Hei, Lee, Ya-Wei, Chang, Tien-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1576
container_issue 8
container_start_page 1566
container_title Applied thermal engineering
container_volume 29
creator Chen, Ping-Hei
Lee, Ya-Wei
Chang, Tien-Li
description Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP.
doi_str_mv 10.1016/j.applthermaleng.2008.07.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33843991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431108003098</els_id><sourcerecordid>33843991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhj2ARCn8Bw_A1mDHceJILKiifKgSDDBbtnNpXTkf2C5S_z0urZDYmO4dnrtX9yB0RUlGCS1vN5kaRxfX4DvloF9lOSEiI1VGSHWCJpTxelYwSs_QeQgbQmguqmKCXt48NNZE26_wcRnbPkSlrbNxlzJW2LghQIPdMIx43LqgfvA1qIhHOwIOuxChu0CnrXIBLo9zij4WD-_zp9ny9fF5fr-cmaLgccZ5K0AVdVlS1mhOWt00hpVa60aTQnHWipyrRFHRaFEyknMGtS4pESnXik3RzeHu6IfPLYQoOxsMOKd6GLZBMiYKVtc0gXcH0PghBA-tHL3tlN9JSuRemtzIv9LkXpoklUzS0vr1sUcFo1zrVW9s-L2RJ4M1K_fc4sBBevrLgpfBWOhN8urBRNkM9n-F34vJjmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33843991</pqid></control><display><type>article</type><title>Predicting thermal instability in a closed loop pulsating heat pipe system</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Ping-Hei ; Lee, Ya-Wei ; Chang, Tien-Li</creator><creatorcontrib>Chen, Ping-Hei ; Lee, Ya-Wei ; Chang, Tien-Li</creatorcontrib><description>Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2008.07.007</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat transfer ; MISO ; NARMAX ; Pulsating heat pipe ; Theoretical studies. Data and constants. Metering ; Two-phase flow</subject><ispartof>Applied thermal engineering, 2009-06, Vol.29 (8), p.1566-1576</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</citedby><cites>FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431108003098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21289367$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Ping-Hei</creatorcontrib><creatorcontrib>Lee, Ya-Wei</creatorcontrib><creatorcontrib>Chang, Tien-Li</creatorcontrib><title>Predicting thermal instability in a closed loop pulsating heat pipe system</title><title>Applied thermal engineering</title><description>Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP.</description><subject>Applied sciences</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat transfer</subject><subject>MISO</subject><subject>NARMAX</subject><subject>Pulsating heat pipe</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Two-phase flow</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhj2ARCn8Bw_A1mDHceJILKiifKgSDDBbtnNpXTkf2C5S_z0urZDYmO4dnrtX9yB0RUlGCS1vN5kaRxfX4DvloF9lOSEiI1VGSHWCJpTxelYwSs_QeQgbQmguqmKCXt48NNZE26_wcRnbPkSlrbNxlzJW2LghQIPdMIx43LqgfvA1qIhHOwIOuxChu0CnrXIBLo9zij4WD-_zp9ny9fF5fr-cmaLgccZ5K0AVdVlS1mhOWt00hpVa60aTQnHWipyrRFHRaFEyknMGtS4pESnXik3RzeHu6IfPLYQoOxsMOKd6GLZBMiYKVtc0gXcH0PghBA-tHL3tlN9JSuRemtzIv9LkXpoklUzS0vr1sUcFo1zrVW9s-L2RJ4M1K_fc4sBBevrLgpfBWOhN8urBRNkM9n-F34vJjmA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Chen, Ping-Hei</creator><creator>Lee, Ya-Wei</creator><creator>Chang, Tien-Li</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090601</creationdate><title>Predicting thermal instability in a closed loop pulsating heat pipe system</title><author>Chen, Ping-Hei ; Lee, Ya-Wei ; Chang, Tien-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-55f8ea496613db50fbddc36bbbdb04a53f825a55f18db8630253e9b61083029a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat transfer</topic><topic>MISO</topic><topic>NARMAX</topic><topic>Pulsating heat pipe</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Two-phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ping-Hei</creatorcontrib><creatorcontrib>Lee, Ya-Wei</creatorcontrib><creatorcontrib>Chang, Tien-Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ping-Hei</au><au>Lee, Ya-Wei</au><au>Chang, Tien-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting thermal instability in a closed loop pulsating heat pipe system</atitle><jtitle>Applied thermal engineering</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>29</volume><issue>8</issue><spage>1566</spage><epage>1576</epage><pages>1566-1576</pages><issn>1359-4311</issn><abstract>Mathematical models for a closed loop pulsating heat pipe (CLPHP) with multiple liquid slugs and vapor plugs are presented in this study. The model considers the effect of thermal instability in different sections of a CLPHP at different operational conditions. Based on a neural network, an approach of nonlinear autoregressive moving average model with exogenous inputs (NARMAX) can be applied to the thermal instability of CLPHP. This study approximates the nonlinear behavior of CLPHP with a linear approximation method that can establish the relationship among the response temperature differences between evaporator, adiabatic, and condenser sections. A multi-input single-output (MISO) strategy is adopted in this study to approximate nonlinear behavior of CLPHP. The predicted results show that the effect of the three sections to vapor condensation could be precisely distinguished; meanwhile, thermal performance of CLPHP would be predicted. The development of nonlinear identification technique will be helpful to optimize and understand the heat transfer performance of thermal instability in the different designs of CLPHP.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2008.07.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2009-06, Vol.29 (8), p.1566-1576
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_33843991
source Elsevier ScienceDirect Journals
subjects Applied sciences
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
MISO
NARMAX
Pulsating heat pipe
Theoretical studies. Data and constants. Metering
Two-phase flow
title Predicting thermal instability in a closed loop pulsating heat pipe system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20thermal%20instability%20in%20a%20closed%20loop%20pulsating%20heat%20pipe%20system&rft.jtitle=Applied%20thermal%20engineering&rft.au=Chen,%20Ping-Hei&rft.date=2009-06-01&rft.volume=29&rft.issue=8&rft.spage=1566&rft.epage=1576&rft.pages=1566-1576&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2008.07.007&rft_dat=%3Cproquest_cross%3E33843991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33843991&rft_id=info:pmid/&rft_els_id=S1359431108003098&rfr_iscdi=true