Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies

This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strojniski Vestnik 2009-01, Vol.55 (1), p.64-75
1. Verfasser: Marinkovic, Velibor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 64
container_title Strojniski Vestnik
container_volume 55
creator Marinkovic, Velibor
description This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_33838316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33838316</sourcerecordid><originalsourceid>FETCH-LOGICAL-g246t-e8a5e0e87d7d2a5f7a76f8ace955fbfef68507a70011a80f2642adc1eb1b005f3</originalsourceid><addsrcrecordid>eNotjzFPwzAUhD2ARFX6HzyxRXKc2HHGqKWAFMoCc_XiPKcWrl1sR_x9AkU3fNLd6aS7ISvGqrbgtWJ3ZJOSHRjjdavaSq6I7i4XZzVkGzwNhnYxW2O1BUcPOMc_5O8QP6kJkb6GEZ31E80npHsH6UR78CPd2TP6tEwkav01DHH6Le4spntya8Al3PxzTT72j-_b56J_e3rZdn0x8VrmAhUIZKiasRk5CNNAI40Cja0QZjBopBJsMRkrS1DMcFlzGHWJQ7k8EqZak4fr7iWGrxlTPp5t0ugceAxzOlaVWlTK6gfGeFOa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33838316</pqid></control><display><type>article</type><title>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Marinkovic, Velibor</creator><creatorcontrib>Marinkovic, Velibor</creatorcontrib><description>This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process.</description><identifier>ISSN: 0039-2480</identifier><language>eng</language><ispartof>Strojniski Vestnik, 2009-01, Vol.55 (1), p.64-75</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Marinkovic, Velibor</creatorcontrib><title>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</title><title>Strojniski Vestnik</title><description>This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process.</description><issn>0039-2480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNotjzFPwzAUhD2ARFX6HzyxRXKc2HHGqKWAFMoCc_XiPKcWrl1sR_x9AkU3fNLd6aS7ISvGqrbgtWJ3ZJOSHRjjdavaSq6I7i4XZzVkGzwNhnYxW2O1BUcPOMc_5O8QP6kJkb6GEZ31E80npHsH6UR78CPd2TP6tEwkav01DHH6Le4spntya8Al3PxzTT72j-_b56J_e3rZdn0x8VrmAhUIZKiasRk5CNNAI40Cja0QZjBopBJsMRkrS1DMcFlzGHWJQ7k8EqZak4fr7iWGrxlTPp5t0ugceAxzOlaVWlTK6gfGeFOa</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Marinkovic, Velibor</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20090101</creationdate><title>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</title><author>Marinkovic, Velibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g246t-e8a5e0e87d7d2a5f7a76f8ace955fbfef68507a70011a80f2642adc1eb1b005f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinkovic, Velibor</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Strojniski Vestnik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinkovic, Velibor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</atitle><jtitle>Strojniski Vestnik</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>55</volume><issue>1</issue><spage>64</spage><epage>75</epage><pages>64-75</pages><issn>0039-2480</issn><abstract>This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process.</abstract><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-2480
ispartof Strojniski Vestnik, 2009-01, Vol.55 (1), p.64-75
issn 0039-2480
language eng
recordid cdi_proquest_miscellaneous_33838316
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Neural%20Network%20for%20Modeling%20the%20Flash%20Land%20Dimensions%20in%20the%20Forging%20Dies&rft.jtitle=Strojniski%20Vestnik&rft.au=Marinkovic,%20Velibor&rft.date=2009-01-01&rft.volume=55&rft.issue=1&rft.spage=64&rft.epage=75&rft.pages=64-75&rft.issn=0039-2480&rft_id=info:doi/&rft_dat=%3Cproquest%3E33838316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33838316&rft_id=info:pmid/&rfr_iscdi=true