Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies
This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many...
Gespeichert in:
Veröffentlicht in: | Strojniski Vestnik 2009-01, Vol.55 (1), p.64-75 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 64 |
container_title | Strojniski Vestnik |
container_volume | 55 |
creator | Marinkovic, Velibor |
description | This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_33838316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33838316</sourcerecordid><originalsourceid>FETCH-LOGICAL-g246t-e8a5e0e87d7d2a5f7a76f8ace955fbfef68507a70011a80f2642adc1eb1b005f3</originalsourceid><addsrcrecordid>eNotjzFPwzAUhD2ARFX6HzyxRXKc2HHGqKWAFMoCc_XiPKcWrl1sR_x9AkU3fNLd6aS7ISvGqrbgtWJ3ZJOSHRjjdavaSq6I7i4XZzVkGzwNhnYxW2O1BUcPOMc_5O8QP6kJkb6GEZ31E80npHsH6UR78CPd2TP6tEwkav01DHH6Le4spntya8Al3PxzTT72j-_b56J_e3rZdn0x8VrmAhUIZKiasRk5CNNAI40Cja0QZjBopBJsMRkrS1DMcFlzGHWJQ7k8EqZak4fr7iWGrxlTPp5t0ugceAxzOlaVWlTK6gfGeFOa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33838316</pqid></control><display><type>article</type><title>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Marinkovic, Velibor</creator><creatorcontrib>Marinkovic, Velibor</creatorcontrib><description>This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process.</description><identifier>ISSN: 0039-2480</identifier><language>eng</language><ispartof>Strojniski Vestnik, 2009-01, Vol.55 (1), p.64-75</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Marinkovic, Velibor</creatorcontrib><title>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</title><title>Strojniski Vestnik</title><description>This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process.</description><issn>0039-2480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNotjzFPwzAUhD2ARFX6HzyxRXKc2HHGqKWAFMoCc_XiPKcWrl1sR_x9AkU3fNLd6aS7ISvGqrbgtWJ3ZJOSHRjjdavaSq6I7i4XZzVkGzwNhnYxW2O1BUcPOMc_5O8QP6kJkb6GEZ31E80npHsH6UR78CPd2TP6tEwkav01DHH6Le4spntya8Al3PxzTT72j-_b56J_e3rZdn0x8VrmAhUIZKiasRk5CNNAI40Cja0QZjBopBJsMRkrS1DMcFlzGHWJQ7k8EqZak4fr7iWGrxlTPp5t0ugceAxzOlaVWlTK6gfGeFOa</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Marinkovic, Velibor</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20090101</creationdate><title>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</title><author>Marinkovic, Velibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g246t-e8a5e0e87d7d2a5f7a76f8ace955fbfef68507a70011a80f2642adc1eb1b005f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marinkovic, Velibor</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Strojniski Vestnik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinkovic, Velibor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies</atitle><jtitle>Strojniski Vestnik</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>55</volume><issue>1</issue><spage>64</spage><epage>75</epage><pages>64-75</pages><issn>0039-2480</issn><abstract>This paper proposes an approach to modeling the flash land by applying artificial neural network (ANN). A three-layer feed-forward ANN, with backpropagation algorithm for supervised learning is created. A sigmoid type of non-linearity is applied to neurons. In the reference literature there are many examples showing that the prediction model developed by means of ANN is more accurate than the one developed by the regression analysis. The trained ANN has shown a high level of prediction so that it can be used for designing and optimizing the conventional forging process.</abstract><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2480 |
ispartof | Strojniski Vestnik, 2009-01, Vol.55 (1), p.64-75 |
issn | 0039-2480 |
language | eng |
recordid | cdi_proquest_miscellaneous_33838316 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
title | Application of Artificial Neural Network for Modeling the Flash Land Dimensions in the Forging Dies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A32%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Neural%20Network%20for%20Modeling%20the%20Flash%20Land%20Dimensions%20in%20the%20Forging%20Dies&rft.jtitle=Strojniski%20Vestnik&rft.au=Marinkovic,%20Velibor&rft.date=2009-01-01&rft.volume=55&rft.issue=1&rft.spage=64&rft.epage=75&rft.pages=64-75&rft.issn=0039-2480&rft_id=info:doi/&rft_dat=%3Cproquest%3E33838316%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33838316&rft_id=info:pmid/&rfr_iscdi=true |