Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT

A soluble graphene, which has a one‐atom thickness and a two‐dimensional structure, is blended with poly(3‐hexylthiophene) (P3HT) and used as the active layer in bulk heterojunction (BHJ) polymer photovoltaic cells. Adding graphene to the P3HT induces a great quenching of the photoluminescence of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2009-03, Vol.19 (6), p.894-904
Hauptverfasser: Liu, Qian, Liu, Zunfeng, Zhang, Xiaoyan, Yang, Liying, Zhang, Nan, Pan, Guiling, Yin, Shougen, Chen, Yongsheng, Wei, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 904
container_issue 6
container_start_page 894
container_title Advanced functional materials
container_volume 19
creator Liu, Qian
Liu, Zunfeng
Zhang, Xiaoyan
Yang, Liying
Zhang, Nan
Pan, Guiling
Yin, Shougen
Chen, Yongsheng
Wei, Jun
description A soluble graphene, which has a one‐atom thickness and a two‐dimensional structure, is blended with poly(3‐hexylthiophene) (P3HT) and used as the active layer in bulk heterojunction (BHJ) polymer photovoltaic cells. Adding graphene to the P3HT induces a great quenching of the photoluminescence of the P3HT, indicating a strong electron/energy transfer from the P3HT to the graphene. In the photovoltaic devices with an ITO/PEDOT:PSS/P3HT:graphene/LiF/Al structure, the device efficiency increases first and then decreases with the increase in the graphene content. The device containing only 10 wt % of graphene shows the best performance with a power conversion efficiency of 1.1%, an open‐circuit voltage of 0.72 V, a short‐circuit current density of 4.0 mA cm−2, and a fill factor of 0.38 under simulated AM1.5G conditions at 100 mW cm−2 after an annealing treatment at 160 °C for 10 min. The annealing treatment at the appropriate temperature (160 °C, for example) greatly improves the device performance; however, an annealing at overgenerous conditions such as at 210 °C results in a decrease in the device efficiency (0.57%). The morphology investigation shows that better performance can be obtained with a moderate content of graphene, which keeps good dispersion and interconnection. The functionalized graphene, which is cheap, easily prepared, stable, and inert against the ambient conditions, is expected to be a competitive candidate for the acceptor material in organic photovoltaic applications. Organic photovoltaic cells based on soluble graphene are studied with regard to graphene content, annealing conditions, and morphology. Annealing treatment at an appropriate temperature greatly improves the device performance, and moderate graphene content in the polymer matrix forming an interconnecting network and avoiding aggregation favors the device performance.
doi_str_mv 10.1002/adfm.200800954
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33816572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33816572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3544-a9305970a49925cdaa00163aaf42d95beecff7e6f6148c932d5d8998ac430303</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujiYhePe_kbdiu7bYeAQUkoDMuwVvz6Low3VZsh8p_78gM8Wbe4b3D97388kPomuABwTi4hSyvBgHGMcaCsxPUIyEJfYqD-PR4k9dzdOHcG8YkiijroXliyn2lrZdsTGM-TdlAobyxLkvnjcDpzDO192LKXVOY2k-sUdo5WJfam1rYbnStPagzL6Gz9BKd5VA6ffW7-yid3Kfjmb94mj6MhwtfUc6YD4JiLiIMTIiAqwygDRNSgJwFmeBrrVWeRzrMQ8JiJWiQ8SwWIgbFKG6nj266t1trPnbaNbIqnGoDQ63NzklKYxLyKGjBQQcqa5yzOpdbW1Rg95JgeWhMHhqTx8ZaQXTCV1Hq_T-0HN5Nln9dv3ML1-jvowv2XYYRjbhcPU7lCPPVeJ4-yyX9ASj5fk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33816572</pqid></control><display><type>article</type><title>Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Qian ; Liu, Zunfeng ; Zhang, Xiaoyan ; Yang, Liying ; Zhang, Nan ; Pan, Guiling ; Yin, Shougen ; Chen, Yongsheng ; Wei, Jun</creator><creatorcontrib>Liu, Qian ; Liu, Zunfeng ; Zhang, Xiaoyan ; Yang, Liying ; Zhang, Nan ; Pan, Guiling ; Yin, Shougen ; Chen, Yongsheng ; Wei, Jun</creatorcontrib><description>A soluble graphene, which has a one‐atom thickness and a two‐dimensional structure, is blended with poly(3‐hexylthiophene) (P3HT) and used as the active layer in bulk heterojunction (BHJ) polymer photovoltaic cells. Adding graphene to the P3HT induces a great quenching of the photoluminescence of the P3HT, indicating a strong electron/energy transfer from the P3HT to the graphene. In the photovoltaic devices with an ITO/PEDOT:PSS/P3HT:graphene/LiF/Al structure, the device efficiency increases first and then decreases with the increase in the graphene content. The device containing only 10 wt % of graphene shows the best performance with a power conversion efficiency of 1.1%, an open‐circuit voltage of 0.72 V, a short‐circuit current density of 4.0 mA cm−2, and a fill factor of 0.38 under simulated AM1.5G conditions at 100 mW cm−2 after an annealing treatment at 160 °C for 10 min. The annealing treatment at the appropriate temperature (160 °C, for example) greatly improves the device performance; however, an annealing at overgenerous conditions such as at 210 °C results in a decrease in the device efficiency (0.57%). The morphology investigation shows that better performance can be obtained with a moderate content of graphene, which keeps good dispersion and interconnection. The functionalized graphene, which is cheap, easily prepared, stable, and inert against the ambient conditions, is expected to be a competitive candidate for the acceptor material in organic photovoltaic applications. Organic photovoltaic cells based on soluble graphene are studied with regard to graphene content, annealing conditions, and morphology. Annealing treatment at an appropriate temperature greatly improves the device performance, and moderate graphene content in the polymer matrix forming an interconnecting network and avoiding aggregation favors the device performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200800954</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>annealing ; graphene ; organic photovoltaic devices ; photovoltaic cells</subject><ispartof>Advanced functional materials, 2009-03, Vol.19 (6), p.894-904</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3544-a9305970a49925cdaa00163aaf42d95beecff7e6f6148c932d5d8998ac430303</citedby><cites>FETCH-LOGICAL-c3544-a9305970a49925cdaa00163aaf42d95beecff7e6f6148c932d5d8998ac430303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200800954$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200800954$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Liu, Zunfeng</creatorcontrib><creatorcontrib>Zhang, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Liying</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Pan, Guiling</creatorcontrib><creatorcontrib>Yin, Shougen</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><title>Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A soluble graphene, which has a one‐atom thickness and a two‐dimensional structure, is blended with poly(3‐hexylthiophene) (P3HT) and used as the active layer in bulk heterojunction (BHJ) polymer photovoltaic cells. Adding graphene to the P3HT induces a great quenching of the photoluminescence of the P3HT, indicating a strong electron/energy transfer from the P3HT to the graphene. In the photovoltaic devices with an ITO/PEDOT:PSS/P3HT:graphene/LiF/Al structure, the device efficiency increases first and then decreases with the increase in the graphene content. The device containing only 10 wt % of graphene shows the best performance with a power conversion efficiency of 1.1%, an open‐circuit voltage of 0.72 V, a short‐circuit current density of 4.0 mA cm−2, and a fill factor of 0.38 under simulated AM1.5G conditions at 100 mW cm−2 after an annealing treatment at 160 °C for 10 min. The annealing treatment at the appropriate temperature (160 °C, for example) greatly improves the device performance; however, an annealing at overgenerous conditions such as at 210 °C results in a decrease in the device efficiency (0.57%). The morphology investigation shows that better performance can be obtained with a moderate content of graphene, which keeps good dispersion and interconnection. The functionalized graphene, which is cheap, easily prepared, stable, and inert against the ambient conditions, is expected to be a competitive candidate for the acceptor material in organic photovoltaic applications. Organic photovoltaic cells based on soluble graphene are studied with regard to graphene content, annealing conditions, and morphology. Annealing treatment at an appropriate temperature greatly improves the device performance, and moderate graphene content in the polymer matrix forming an interconnecting network and avoiding aggregation favors the device performance.</description><subject>annealing</subject><subject>graphene</subject><subject>organic photovoltaic devices</subject><subject>photovoltaic cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxujiYhePe_kbdiu7bYeAQUkoDMuwVvz6Low3VZsh8p_78gM8Wbe4b3D97388kPomuABwTi4hSyvBgHGMcaCsxPUIyEJfYqD-PR4k9dzdOHcG8YkiijroXliyn2lrZdsTGM-TdlAobyxLkvnjcDpzDO192LKXVOY2k-sUdo5WJfam1rYbnStPagzL6Gz9BKd5VA6ffW7-yid3Kfjmb94mj6MhwtfUc6YD4JiLiIMTIiAqwygDRNSgJwFmeBrrVWeRzrMQ8JiJWiQ8SwWIgbFKG6nj266t1trPnbaNbIqnGoDQ63NzklKYxLyKGjBQQcqa5yzOpdbW1Rg95JgeWhMHhqTx8ZaQXTCV1Hq_T-0HN5Nln9dv3ML1-jvowv2XYYRjbhcPU7lCPPVeJ4-yyX9ASj5fk8</recordid><startdate>20090324</startdate><enddate>20090324</enddate><creator>Liu, Qian</creator><creator>Liu, Zunfeng</creator><creator>Zhang, Xiaoyan</creator><creator>Yang, Liying</creator><creator>Zhang, Nan</creator><creator>Pan, Guiling</creator><creator>Yin, Shougen</creator><creator>Chen, Yongsheng</creator><creator>Wei, Jun</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20090324</creationdate><title>Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT</title><author>Liu, Qian ; Liu, Zunfeng ; Zhang, Xiaoyan ; Yang, Liying ; Zhang, Nan ; Pan, Guiling ; Yin, Shougen ; Chen, Yongsheng ; Wei, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3544-a9305970a49925cdaa00163aaf42d95beecff7e6f6148c932d5d8998ac430303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>annealing</topic><topic>graphene</topic><topic>organic photovoltaic devices</topic><topic>photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Liu, Zunfeng</creatorcontrib><creatorcontrib>Zhang, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Liying</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Pan, Guiling</creatorcontrib><creatorcontrib>Yin, Shougen</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qian</au><au>Liu, Zunfeng</au><au>Zhang, Xiaoyan</au><au>Yang, Liying</au><au>Zhang, Nan</au><au>Pan, Guiling</au><au>Yin, Shougen</au><au>Chen, Yongsheng</au><au>Wei, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2009-03-24</date><risdate>2009</risdate><volume>19</volume><issue>6</issue><spage>894</spage><epage>904</epage><pages>894-904</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A soluble graphene, which has a one‐atom thickness and a two‐dimensional structure, is blended with poly(3‐hexylthiophene) (P3HT) and used as the active layer in bulk heterojunction (BHJ) polymer photovoltaic cells. Adding graphene to the P3HT induces a great quenching of the photoluminescence of the P3HT, indicating a strong electron/energy transfer from the P3HT to the graphene. In the photovoltaic devices with an ITO/PEDOT:PSS/P3HT:graphene/LiF/Al structure, the device efficiency increases first and then decreases with the increase in the graphene content. The device containing only 10 wt % of graphene shows the best performance with a power conversion efficiency of 1.1%, an open‐circuit voltage of 0.72 V, a short‐circuit current density of 4.0 mA cm−2, and a fill factor of 0.38 under simulated AM1.5G conditions at 100 mW cm−2 after an annealing treatment at 160 °C for 10 min. The annealing treatment at the appropriate temperature (160 °C, for example) greatly improves the device performance; however, an annealing at overgenerous conditions such as at 210 °C results in a decrease in the device efficiency (0.57%). The morphology investigation shows that better performance can be obtained with a moderate content of graphene, which keeps good dispersion and interconnection. The functionalized graphene, which is cheap, easily prepared, stable, and inert against the ambient conditions, is expected to be a competitive candidate for the acceptor material in organic photovoltaic applications. Organic photovoltaic cells based on soluble graphene are studied with regard to graphene content, annealing conditions, and morphology. Annealing treatment at an appropriate temperature greatly improves the device performance, and moderate graphene content in the polymer matrix forming an interconnecting network and avoiding aggregation favors the device performance.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200800954</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2009-03, Vol.19 (6), p.894-904
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_33816572
source Wiley Online Library Journals Frontfile Complete
subjects annealing
graphene
organic photovoltaic devices
photovoltaic cells
title Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3HT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20Photovoltaic%20Cells%20Based%20on%20Solution-Processable%20Graphene%20and%20P3HT&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Qian&rft.date=2009-03-24&rft.volume=19&rft.issue=6&rft.spage=894&rft.epage=904&rft.pages=894-904&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200800954&rft_dat=%3Cproquest_cross%3E33816572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33816572&rft_id=info:pmid/&rfr_iscdi=true