A new alternating direction method for co-coercive variational inequality problems

This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s altern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2009-04, Vol.57 (7), p.1168-1178
Hauptverfasser: Zhang, Wenxing, Han, Deren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1178
container_issue 7
container_start_page 1168
container_title Computers & mathematics with applications (1987)
container_volume 57
creator Zhang, Wenxing
Han, Deren
description This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems.
doi_str_mv 10.1016/j.camwa.2008.09.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33809669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122108006664</els_id><sourcerecordid>1082204641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpINu0vyAXnUoudkZflnToIYR8QaBQmrOYyLONFttKJO-G_Pt6sznnNAw87zvMw9ipgFaA6M43bcTxFVsJ4FrwLWj_ha2Es6qxXee-shU47xohpThm32rdAIBWElbszwWf6JXjMFOZcE7TP96nQnFOeeIjzU-55-tceMxNzFRi2hHfYUm4B3DgaaKXLQ5pfuPPJT8ONNbv7GiNQ6UfH_OEPVxf_b28be5_39xdXtw3UQs5N8oKZXxvtX5U1mhnlIvaGk82kooWezRWSyHRdGZtYNmMQy8M6YgRBagT9vPQuxx-2VKdw5hqpGHAifK2BqUc-K7zC3j2KSjASQm602JB1QGNJddaaB2eSxqxvC1Q2KsOm_CuOuxVB_BhUb2kfh1StLy7S1RCjYmmSAeVoc_p0_x_CESIOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204641</pqid></control><display><type>article</type><title>A new alternating direction method for co-coercive variational inequality problems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Wenxing ; Han, Deren</creator><creatorcontrib>Zhang, Wenxing ; Han, Deren</creatorcontrib><description>This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.09.049</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alternating direction methods ; Co-coercive mappings ; Descent ; Inequalities ; Mathematical analysis ; Mathematical models ; Operational research ; Optimization ; Polyhedrons ; Projection ; Projection methods ; Variational inequality problems</subject><ispartof>Computers &amp; mathematics with applications (1987), 2009-04, Vol.57 (7), p.1168-1178</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</citedby><cites>FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2008.09.049$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Zhang, Wenxing</creatorcontrib><creatorcontrib>Han, Deren</creatorcontrib><title>A new alternating direction method for co-coercive variational inequality problems</title><title>Computers &amp; mathematics with applications (1987)</title><description>This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems.</description><subject>Alternating direction methods</subject><subject>Co-coercive mappings</subject><subject>Descent</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operational research</subject><subject>Optimization</subject><subject>Polyhedrons</subject><subject>Projection</subject><subject>Projection methods</subject><subject>Variational inequality problems</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpINu0vyAXnUoudkZflnToIYR8QaBQmrOYyLONFttKJO-G_Pt6sznnNAw87zvMw9ipgFaA6M43bcTxFVsJ4FrwLWj_ha2Es6qxXee-shU47xohpThm32rdAIBWElbszwWf6JXjMFOZcE7TP96nQnFOeeIjzU-55-tceMxNzFRi2hHfYUm4B3DgaaKXLQ5pfuPPJT8ONNbv7GiNQ6UfH_OEPVxf_b28be5_39xdXtw3UQs5N8oKZXxvtX5U1mhnlIvaGk82kooWezRWSyHRdGZtYNmMQy8M6YgRBagT9vPQuxx-2VKdw5hqpGHAifK2BqUc-K7zC3j2KSjASQm602JB1QGNJddaaB2eSxqxvC1Q2KsOm_CuOuxVB_BhUb2kfh1StLy7S1RCjYmmSAeVoc_p0_x_CESIOQ</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Zhang, Wenxing</creator><creator>Han, Deren</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>A new alternating direction method for co-coercive variational inequality problems</title><author>Zhang, Wenxing ; Han, Deren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alternating direction methods</topic><topic>Co-coercive mappings</topic><topic>Descent</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operational research</topic><topic>Optimization</topic><topic>Polyhedrons</topic><topic>Projection</topic><topic>Projection methods</topic><topic>Variational inequality problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenxing</creatorcontrib><creatorcontrib>Han, Deren</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenxing</au><au>Han, Deren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new alternating direction method for co-coercive variational inequality problems</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>57</volume><issue>7</issue><spage>1168</spage><epage>1178</epage><pages>1168-1178</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.09.049</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2009-04, Vol.57 (7), p.1168-1178
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_33809669
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Alternating direction methods
Co-coercive mappings
Descent
Inequalities
Mathematical analysis
Mathematical models
Operational research
Optimization
Polyhedrons
Projection
Projection methods
Variational inequality problems
title A new alternating direction method for co-coercive variational inequality problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20alternating%20direction%20method%20for%20co-coercive%20variational%20inequality%20problems&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhang,%20Wenxing&rft.date=2009-04-01&rft.volume=57&rft.issue=7&rft.spage=1168&rft.epage=1178&rft.pages=1168-1178&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.09.049&rft_dat=%3Cproquest_cross%3E1082204641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082204641&rft_id=info:pmid/&rft_els_id=S0898122108006664&rfr_iscdi=true