A new alternating direction method for co-coercive variational inequality problems
This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s altern...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2009-04, Vol.57 (7), p.1168-1178 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1178 |
---|---|
container_issue | 7 |
container_start_page | 1168 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 57 |
creator | Zhang, Wenxing Han, Deren |
description | This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems. |
doi_str_mv | 10.1016/j.camwa.2008.09.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33809669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122108006664</els_id><sourcerecordid>1082204641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpINu0vyAXnUoudkZflnToIYR8QaBQmrOYyLONFttKJO-G_Pt6sznnNAw87zvMw9ipgFaA6M43bcTxFVsJ4FrwLWj_ha2Es6qxXee-shU47xohpThm32rdAIBWElbszwWf6JXjMFOZcE7TP96nQnFOeeIjzU-55-tceMxNzFRi2hHfYUm4B3DgaaKXLQ5pfuPPJT8ONNbv7GiNQ6UfH_OEPVxf_b28be5_39xdXtw3UQs5N8oKZXxvtX5U1mhnlIvaGk82kooWezRWSyHRdGZtYNmMQy8M6YgRBagT9vPQuxx-2VKdw5hqpGHAifK2BqUc-K7zC3j2KSjASQm602JB1QGNJddaaB2eSxqxvC1Q2KsOm_CuOuxVB_BhUb2kfh1StLy7S1RCjYmmSAeVoc_p0_x_CESIOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204641</pqid></control><display><type>article</type><title>A new alternating direction method for co-coercive variational inequality problems</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Wenxing ; Han, Deren</creator><creatorcontrib>Zhang, Wenxing ; Han, Deren</creatorcontrib><description>This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.09.049</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alternating direction methods ; Co-coercive mappings ; Descent ; Inequalities ; Mathematical analysis ; Mathematical models ; Operational research ; Optimization ; Polyhedrons ; Projection ; Projection methods ; Variational inequality problems</subject><ispartof>Computers & mathematics with applications (1987), 2009-04, Vol.57 (7), p.1168-1178</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</citedby><cites>FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2008.09.049$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Zhang, Wenxing</creatorcontrib><creatorcontrib>Han, Deren</creatorcontrib><title>A new alternating direction method for co-coercive variational inequality problems</title><title>Computers & mathematics with applications (1987)</title><description>This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems.</description><subject>Alternating direction methods</subject><subject>Co-coercive mappings</subject><subject>Descent</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operational research</subject><subject>Optimization</subject><subject>Polyhedrons</subject><subject>Projection</subject><subject>Projection methods</subject><subject>Variational inequality problems</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpINu0vyAXnUoudkZflnToIYR8QaBQmrOYyLONFttKJO-G_Pt6sznnNAw87zvMw9ipgFaA6M43bcTxFVsJ4FrwLWj_ha2Es6qxXee-shU47xohpThm32rdAIBWElbszwWf6JXjMFOZcE7TP96nQnFOeeIjzU-55-tceMxNzFRi2hHfYUm4B3DgaaKXLQ5pfuPPJT8ONNbv7GiNQ6UfH_OEPVxf_b28be5_39xdXtw3UQs5N8oKZXxvtX5U1mhnlIvaGk82kooWezRWSyHRdGZtYNmMQy8M6YgRBagT9vPQuxx-2VKdw5hqpGHAifK2BqUc-K7zC3j2KSjASQm602JB1QGNJddaaB2eSxqxvC1Q2KsOm_CuOuxVB_BhUb2kfh1StLy7S1RCjYmmSAeVoc_p0_x_CESIOQ</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Zhang, Wenxing</creator><creator>Han, Deren</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>A new alternating direction method for co-coercive variational inequality problems</title><author>Zhang, Wenxing ; Han, Deren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-371359d744b37548538c4759e7ce3c7ada574212a565f50a5758a915e4caca103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alternating direction methods</topic><topic>Co-coercive mappings</topic><topic>Descent</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operational research</topic><topic>Optimization</topic><topic>Polyhedrons</topic><topic>Projection</topic><topic>Projection methods</topic><topic>Variational inequality problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenxing</creatorcontrib><creatorcontrib>Han, Deren</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenxing</au><au>Han, Deren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new alternating direction method for co-coercive variational inequality problems</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>57</volume><issue>7</issue><spage>1168</spage><epage>1178</epage><pages>1168-1178</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper presents a new alternating direction method for solving co-coercive variational inequality problems, where the feasible set is the intersection of a simple set and polyhedron defined by a system of linear equations. The proposed method can be viewed as a combination of Han and Lo’s alternating direction method [D.R. Han, H.K. Lo, A new alternating direction method for a class of nonlinear variational inequality problems, Journal of Optimization Theory and Applications 112 (3) (2002) 549–560] for such class of variational inequality problems and Li, Liao and Yuan’s modified descent method for co-coercive variational inequality problems [M. Li, L.Z. Liao, X.M. Yuan, A modified descent projection method for co-coercive variational inequalities, European Journal of Operational Research 189 (2) (2008) 310–323]. Thus, it possesses the advantages of both Han and Lo’s alternating direction method, which solves a series of small-scale easier problems to solve the original variational inequality problem, and Li, Liao and Yuan’s modified descent method, which is simple provided that the feasible set is simple. We test the new method and compare it with Han and Lo’s method and Li, Liao and Yuan’s modified descent method, and the numerical results show that our new method is suitable for such class of variational inequality problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.09.049</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2009-04, Vol.57 (7), p.1168-1178 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_33809669 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Alternating direction methods Co-coercive mappings Descent Inequalities Mathematical analysis Mathematical models Operational research Optimization Polyhedrons Projection Projection methods Variational inequality problems |
title | A new alternating direction method for co-coercive variational inequality problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20alternating%20direction%20method%20for%20co-coercive%20variational%20inequality%20problems&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhang,%20Wenxing&rft.date=2009-04-01&rft.volume=57&rft.issue=7&rft.spage=1168&rft.epage=1178&rft.pages=1168-1178&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.09.049&rft_dat=%3Cproquest_cross%3E1082204641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082204641&rft_id=info:pmid/&rft_els_id=S0898122108006664&rfr_iscdi=true |