Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow
The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The pro...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2008-07, Vol.49 (4), p.693-698 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 698 |
---|---|
container_issue | 4 |
container_start_page | 693 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 49 |
creator | Teshukov, V. M. Khe, A. K. |
description | The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated. |
doi_str_mv | 10.1007/s10808-008-0086-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33779955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33779955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8YmcYx3nYS1TxkkBsYG05ybhNldqpnVD173EV1ixGMxqde3VnCLnlcM8BqofIQYJkMFfJxBlZ8KISTJYZnJMFQMaZVHl-Sa5i3AKAkrxakP2Hb7Gn3lJD4xi8W9O2i413Y-embjxS6wMdN0hxP5mx8y6e2Dik2fS0P_EH84ORDsEPZp3WadO55GYDIqv95FoTjjRu0ARqe3-4JhfW9BFv_vqSfD8_fa1e2fvny9vq8Z01gquRFbKxUhWoWmNbKcBmqqjqFg3ymjfcSIV1W2Q5KlkKm9kKFUfILVfAqzYTYknuZt-UbD9hHPUuHYZ9bxz6KWohqkqpokggn8Em-BgDWj2EbpdCaw769Fw9P1fDXKU-mWezJibWrTHorZ-CS_f8I_oFZYB-5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33779955</pqid></control><display><type>article</type><title>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teshukov, V. M. ; Khe, A. K.</creator><creatorcontrib>Teshukov, V. M. ; Khe, A. K.</creatorcontrib><description>The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1007/s10808-008-0086-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Classical and Continuum Physics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Physics ; Physics and Astronomy</subject><ispartof>Journal of applied mechanics and technical physics, 2008-07, Vol.49 (4), p.693-698</ispartof><rights>MAIK/Nauka 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</citedby><cites>FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10808-008-0086-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10808-008-0086-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Teshukov, V. M.</creatorcontrib><creatorcontrib>Khe, A. K.</creatorcontrib><title>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated.</description><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8YmcYx3nYS1TxkkBsYG05ybhNldqpnVD173EV1ixGMxqde3VnCLnlcM8BqofIQYJkMFfJxBlZ8KISTJYZnJMFQMaZVHl-Sa5i3AKAkrxakP2Hb7Gn3lJD4xi8W9O2i413Y-embjxS6wMdN0hxP5mx8y6e2Dik2fS0P_EH84ORDsEPZp3WadO55GYDIqv95FoTjjRu0ARqe3-4JhfW9BFv_vqSfD8_fa1e2fvny9vq8Z01gquRFbKxUhWoWmNbKcBmqqjqFg3ymjfcSIV1W2Q5KlkKm9kKFUfILVfAqzYTYknuZt-UbD9hHPUuHYZ9bxz6KWohqkqpokggn8Em-BgDWj2EbpdCaw769Fw9P1fDXKU-mWezJibWrTHorZ-CS_f8I_oFZYB-5g</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Teshukov, V. M.</creator><creator>Khe, A. K.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080701</creationdate><title>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</title><author>Teshukov, V. M. ; Khe, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teshukov, V. M.</creatorcontrib><creatorcontrib>Khe, A. K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teshukov, V. M.</au><au>Khe, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>49</volume><issue>4</issue><spage>693</spage><epage>698</epage><pages>693-698</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10808-008-0086-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 2008-07, Vol.49 (4), p.693-698 |
issn | 0021-8944 1573-8620 |
language | eng |
recordid | cdi_proquest_miscellaneous_33779955 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Classical and Continuum Physics Classical Mechanics Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mechanical Engineering Physics Physics and Astronomy |
title | Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20of%20a%20strong%20discontinuity%20for%20the%20equations%20of%20spatial%20long%20waves%20propagating%20in%20a%20free-boundary%20shear%20flow&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Teshukov,%20V.%20M.&rft.date=2008-07-01&rft.volume=49&rft.issue=4&rft.spage=693&rft.epage=698&rft.pages=693-698&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1007/s10808-008-0086-3&rft_dat=%3Cproquest_cross%3E33779955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33779955&rft_id=info:pmid/&rfr_iscdi=true |