Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow

The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2008-07, Vol.49 (4), p.693-698
Hauptverfasser: Teshukov, V. M., Khe, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 4
container_start_page 693
container_title Journal of applied mechanics and technical physics
container_volume 49
creator Teshukov, V. M.
Khe, A. K.
description The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated.
doi_str_mv 10.1007/s10808-008-0086-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33779955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33779955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8YmcYx3nYS1TxkkBsYG05ybhNldqpnVD173EV1ixGMxqde3VnCLnlcM8BqofIQYJkMFfJxBlZ8KISTJYZnJMFQMaZVHl-Sa5i3AKAkrxakP2Hb7Gn3lJD4xi8W9O2i413Y-embjxS6wMdN0hxP5mx8y6e2Dik2fS0P_EH84ORDsEPZp3WadO55GYDIqv95FoTjjRu0ARqe3-4JhfW9BFv_vqSfD8_fa1e2fvny9vq8Z01gquRFbKxUhWoWmNbKcBmqqjqFg3ymjfcSIV1W2Q5KlkKm9kKFUfILVfAqzYTYknuZt-UbD9hHPUuHYZ9bxz6KWohqkqpokggn8Em-BgDWj2EbpdCaw769Fw9P1fDXKU-mWezJibWrTHorZ-CS_f8I_oFZYB-5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33779955</pqid></control><display><type>article</type><title>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teshukov, V. M. ; Khe, A. K.</creator><creatorcontrib>Teshukov, V. M. ; Khe, A. K.</creatorcontrib><description>The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1007/s10808-008-0086-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Classical and Continuum Physics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Physics ; Physics and Astronomy</subject><ispartof>Journal of applied mechanics and technical physics, 2008-07, Vol.49 (4), p.693-698</ispartof><rights>MAIK/Nauka 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</citedby><cites>FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10808-008-0086-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10808-008-0086-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Teshukov, V. M.</creatorcontrib><creatorcontrib>Khe, A. K.</creatorcontrib><title>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated.</description><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8YmcYx3nYS1TxkkBsYG05ybhNldqpnVD173EV1ixGMxqde3VnCLnlcM8BqofIQYJkMFfJxBlZ8KISTJYZnJMFQMaZVHl-Sa5i3AKAkrxakP2Hb7Gn3lJD4xi8W9O2i413Y-embjxS6wMdN0hxP5mx8y6e2Dik2fS0P_EH84ORDsEPZp3WadO55GYDIqv95FoTjjRu0ARqe3-4JhfW9BFv_vqSfD8_fa1e2fvny9vq8Z01gquRFbKxUhWoWmNbKcBmqqjqFg3ymjfcSIV1W2Q5KlkKm9kKFUfILVfAqzYTYknuZt-UbD9hHPUuHYZ9bxz6KWohqkqpokggn8Em-BgDWj2EbpdCaw769Fw9P1fDXKU-mWezJibWrTHorZ-CS_f8I_oFZYB-5g</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Teshukov, V. M.</creator><creator>Khe, A. K.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20080701</creationdate><title>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</title><author>Teshukov, V. M. ; Khe, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-58cf895e9dafd830f2957bdeae1b1c1a89ebd524e9863f2f7e91e04f19017d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teshukov, V. M.</creatorcontrib><creatorcontrib>Khe, A. K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teshukov, V. M.</au><au>Khe, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>49</volume><issue>4</issue><spage>693</spage><epage>698</epage><pages>693-698</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The long-wave equations describing three-dimensional shear wave motion of a free-surface ideal fluid are rearranged to a special form and used to describe discontinuous solutions. Relations at the discontinuity front are derived, and stability conditions for the discontinuity are formulated. The problem of determining the flow parameters behind the discontinuity front from known parameters before the front and specified velocity of motion of the front are investigated.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10808-008-0086-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2008-07, Vol.49 (4), p.693-698
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_miscellaneous_33779955
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Classical and Continuum Physics
Classical Mechanics
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Physics
Physics and Astronomy
title Model of a strong discontinuity for the equations of spatial long waves propagating in a free-boundary shear flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20of%20a%20strong%20discontinuity%20for%20the%20equations%20of%20spatial%20long%20waves%20propagating%20in%20a%20free-boundary%20shear%20flow&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Teshukov,%20V.%20M.&rft.date=2008-07-01&rft.volume=49&rft.issue=4&rft.spage=693&rft.epage=698&rft.pages=693-698&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1007/s10808-008-0086-3&rft_dat=%3Cproquest_cross%3E33779955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33779955&rft_id=info:pmid/&rfr_iscdi=true