Knowledge-guided laboratory evolution of protein thermolability

In rare but nevertheless important cases it is of practical interest to decrease the thermostability of an enzyme, that is, to increase thermolability in a controlled manner. In the present model study, this unconventional goal has been reached by applying directed evolution to the lipase from Pseud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2009-04, Vol.102 (6), p.1712-1717
Hauptverfasser: Reetz, Manfred T, Soni, Pankaj, Fernández, Layla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1717
container_issue 6
container_start_page 1712
container_title Biotechnology and bioengineering
container_volume 102
creator Reetz, Manfred T
Soni, Pankaj
Fernández, Layla
description In rare but nevertheless important cases it is of practical interest to decrease the thermostability of an enzyme, that is, to increase thermolability in a controlled manner. In the present model study, this unconventional goal has been reached by applying directed evolution to the lipase from Pseudomonas aeruginosa (PAL). By utilizing the B-factor iterative test (B-FIT), previously developed to increase the thermostability of enzymes, it was possible to reduce the $T_{50}^{15} $ value from 71.6°C in the case of wild type (WT-PAL) to 35.6°C (best mutant) without affecting the catalytic profile in terms of substrate acceptance or enantioselectivity at room temperature. Accordingly, saturation mutagenesis was performed at sites in PAL, which on the basis of its X-ray structure, have the lowest B-factors indicative of high rigidity. Focused mutations were introduced which can be expected to decrease rigidity, the ensuing increased flexibility leading to higher thermolability without changing the actual catalytic profile. Biotechnol. Bioeng. 2009;102: 1712-1717.
doi_str_mv 10.1002/bit.22202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33735092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20134130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5702-79db4f714538e21a8690f86f09e16a70891ab8ce2df01648db7e4c085b4828813</originalsourceid><addsrcrecordid>eNqF0E1rFDEYB_Agil2rB7-ADoJCD9M-SSaT5FR0sdvWoge3CF5CZiZZU7OTmsxY99s366wVCuIpBH7P2x-h5xgOMQA5atxwSAgB8gDNMEheApHwEM0AoC4pk2QPPUnpKn-5qOvHaA9L4ERUbIaOP_ThxptuZcrV6DrTFV43IeohxE1hfgY_Di70RbDFdQyDcX0xfDNxHbJy3g2bp-iR1T6ZZ7t3H12evF_OT8uLT4uz-duLsmUcSMll11SW44pRYQjWopZgRW1BGlxrDkJi3YjWkM4CrivRNdxULQjWVIIIgek-ejP1zWv8GE0a1Nql1nivexPGpCjllIEk_4UEMK0whQxf3YNXYYx9PkIRTHmNBRUZHUyojSGlaKy6jm6t40ZhUNvsVc5e_c4-2xe7hmOzNt1fuQs7g9c7oFOrvY26b126cwQTySTeuqPJ3ThvNv-eqN6dLf-MLqcKlwbz665Cx--q5pQz9eXjQp2y869zcrJQy-xfTt7qoPQq5i0uP2-TyeEDYMHpLYpvsOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213761838</pqid></control><display><type>article</type><title>Knowledge-guided laboratory evolution of protein thermolability</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Reetz, Manfred T ; Soni, Pankaj ; Fernández, Layla</creator><creatorcontrib>Reetz, Manfred T ; Soni, Pankaj ; Fernández, Layla</creatorcontrib><description>In rare but nevertheless important cases it is of practical interest to decrease the thermostability of an enzyme, that is, to increase thermolability in a controlled manner. In the present model study, this unconventional goal has been reached by applying directed evolution to the lipase from Pseudomonas aeruginosa (PAL). By utilizing the B-factor iterative test (B-FIT), previously developed to increase the thermostability of enzymes, it was possible to reduce the $T_{50}^{15} $ value from 71.6°C in the case of wild type (WT-PAL) to 35.6°C (best mutant) without affecting the catalytic profile in terms of substrate acceptance or enantioselectivity at room temperature. Accordingly, saturation mutagenesis was performed at sites in PAL, which on the basis of its X-ray structure, have the lowest B-factors indicative of high rigidity. Focused mutations were introduced which can be expected to decrease rigidity, the ensuing increased flexibility leading to higher thermolability without changing the actual catalytic profile. Biotechnol. Bioeng. 2009;102: 1712-1717.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.22202</identifier><identifier>PMID: 19072845</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>B-factors ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Biotechnology ; Catalysis ; directed evolution ; Directed Molecular Evolution - methods ; Enzyme Stability - genetics ; enzyme thermolability ; Enzymes ; Evolution &amp; development ; Fundamental and applied biological sciences. Psychology ; Gene Library ; Lipase - chemistry ; Lipase - genetics ; lipases ; Methods. Procedures. Technologies ; Models, Molecular ; Mutagenesis ; Mutation ; Protein engineering ; Proteins ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - enzymology ; Pseudomonas aeruginosa - genetics ; saturation mutagenesis ; Substrate Specificity - genetics ; Temperature</subject><ispartof>Biotechnology and bioengineering, 2009-04, Vol.102 (6), p.1712-1717</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><rights>2009 INIST-CNRS</rights><rights>2008 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Apr 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5702-79db4f714538e21a8690f86f09e16a70891ab8ce2df01648db7e4c085b4828813</citedby><cites>FETCH-LOGICAL-c5702-79db4f714538e21a8690f86f09e16a70891ab8ce2df01648db7e4c085b4828813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.22202$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.22202$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21295915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19072845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reetz, Manfred T</creatorcontrib><creatorcontrib>Soni, Pankaj</creatorcontrib><creatorcontrib>Fernández, Layla</creatorcontrib><title>Knowledge-guided laboratory evolution of protein thermolability</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>In rare but nevertheless important cases it is of practical interest to decrease the thermostability of an enzyme, that is, to increase thermolability in a controlled manner. In the present model study, this unconventional goal has been reached by applying directed evolution to the lipase from Pseudomonas aeruginosa (PAL). By utilizing the B-factor iterative test (B-FIT), previously developed to increase the thermostability of enzymes, it was possible to reduce the $T_{50}^{15} $ value from 71.6°C in the case of wild type (WT-PAL) to 35.6°C (best mutant) without affecting the catalytic profile in terms of substrate acceptance or enantioselectivity at room temperature. Accordingly, saturation mutagenesis was performed at sites in PAL, which on the basis of its X-ray structure, have the lowest B-factors indicative of high rigidity. Focused mutations were introduced which can be expected to decrease rigidity, the ensuing increased flexibility leading to higher thermolability without changing the actual catalytic profile. Biotechnol. Bioeng. 2009;102: 1712-1717.</description><subject>B-factors</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>directed evolution</subject><subject>Directed Molecular Evolution - methods</subject><subject>Enzyme Stability - genetics</subject><subject>enzyme thermolability</subject><subject>Enzymes</subject><subject>Evolution &amp; development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Library</subject><subject>Lipase - chemistry</subject><subject>Lipase - genetics</subject><subject>lipases</subject><subject>Methods. Procedures. Technologies</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Protein engineering</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>saturation mutagenesis</subject><subject>Substrate Specificity - genetics</subject><subject>Temperature</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1rFDEYB_Agil2rB7-ADoJCD9M-SSaT5FR0sdvWoge3CF5CZiZZU7OTmsxY99s366wVCuIpBH7P2x-h5xgOMQA5atxwSAgB8gDNMEheApHwEM0AoC4pk2QPPUnpKn-5qOvHaA9L4ERUbIaOP_ThxptuZcrV6DrTFV43IeohxE1hfgY_Di70RbDFdQyDcX0xfDNxHbJy3g2bp-iR1T6ZZ7t3H12evF_OT8uLT4uz-duLsmUcSMll11SW44pRYQjWopZgRW1BGlxrDkJi3YjWkM4CrivRNdxULQjWVIIIgek-ejP1zWv8GE0a1Nql1nivexPGpCjllIEk_4UEMK0whQxf3YNXYYx9PkIRTHmNBRUZHUyojSGlaKy6jm6t40ZhUNvsVc5e_c4-2xe7hmOzNt1fuQs7g9c7oFOrvY26b126cwQTySTeuqPJ3ThvNv-eqN6dLf-MLqcKlwbz665Cx--q5pQz9eXjQp2y869zcrJQy-xfTt7qoPQq5i0uP2-TyeEDYMHpLYpvsOM</recordid><startdate>20090415</startdate><enddate>20090415</enddate><creator>Reetz, Manfred T</creator><creator>Soni, Pankaj</creator><creator>Fernández, Layla</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope></search><sort><creationdate>20090415</creationdate><title>Knowledge-guided laboratory evolution of protein thermolability</title><author>Reetz, Manfred T ; Soni, Pankaj ; Fernández, Layla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5702-79db4f714538e21a8690f86f09e16a70891ab8ce2df01648db7e4c085b4828813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>B-factors</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>directed evolution</topic><topic>Directed Molecular Evolution - methods</topic><topic>Enzyme Stability - genetics</topic><topic>enzyme thermolability</topic><topic>Enzymes</topic><topic>Evolution &amp; development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Library</topic><topic>Lipase - chemistry</topic><topic>Lipase - genetics</topic><topic>lipases</topic><topic>Methods. Procedures. Technologies</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Protein engineering</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>saturation mutagenesis</topic><topic>Substrate Specificity - genetics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reetz, Manfred T</creatorcontrib><creatorcontrib>Soni, Pankaj</creatorcontrib><creatorcontrib>Fernández, Layla</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reetz, Manfred T</au><au>Soni, Pankaj</au><au>Fernández, Layla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-guided laboratory evolution of protein thermolability</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2009-04-15</date><risdate>2009</risdate><volume>102</volume><issue>6</issue><spage>1712</spage><epage>1717</epage><pages>1712-1717</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>In rare but nevertheless important cases it is of practical interest to decrease the thermostability of an enzyme, that is, to increase thermolability in a controlled manner. In the present model study, this unconventional goal has been reached by applying directed evolution to the lipase from Pseudomonas aeruginosa (PAL). By utilizing the B-factor iterative test (B-FIT), previously developed to increase the thermostability of enzymes, it was possible to reduce the $T_{50}^{15} $ value from 71.6°C in the case of wild type (WT-PAL) to 35.6°C (best mutant) without affecting the catalytic profile in terms of substrate acceptance or enantioselectivity at room temperature. Accordingly, saturation mutagenesis was performed at sites in PAL, which on the basis of its X-ray structure, have the lowest B-factors indicative of high rigidity. Focused mutations were introduced which can be expected to decrease rigidity, the ensuing increased flexibility leading to higher thermolability without changing the actual catalytic profile. Biotechnol. Bioeng. 2009;102: 1712-1717.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19072845</pmid><doi>10.1002/bit.22202</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2009-04, Vol.102 (6), p.1712-1717
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_33735092
source MEDLINE; Access via Wiley Online Library
subjects B-factors
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological and medical sciences
Biotechnology
Catalysis
directed evolution
Directed Molecular Evolution - methods
Enzyme Stability - genetics
enzyme thermolability
Enzymes
Evolution & development
Fundamental and applied biological sciences. Psychology
Gene Library
Lipase - chemistry
Lipase - genetics
lipases
Methods. Procedures. Technologies
Models, Molecular
Mutagenesis
Mutation
Protein engineering
Proteins
Pseudomonas aeruginosa
Pseudomonas aeruginosa - enzymology
Pseudomonas aeruginosa - genetics
saturation mutagenesis
Substrate Specificity - genetics
Temperature
title Knowledge-guided laboratory evolution of protein thermolability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-guided%20laboratory%20evolution%20of%20protein%20thermolability&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Reetz,%20Manfred%20T&rft.date=2009-04-15&rft.volume=102&rft.issue=6&rft.spage=1712&rft.epage=1717&rft.pages=1712-1717&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.22202&rft_dat=%3Cproquest_cross%3E20134130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213761838&rft_id=info:pmid/19072845&rfr_iscdi=true