Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder

Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2009-04, Vol.59 (12), p.1351-1368
Hauptverfasser: Sekhar, T. V. S., Sivakumar, R., Ravi Kumar, T. V. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1368
container_issue 12
container_start_page 1351
container_title International journal for numerical methods in fluids
container_volume 59
creator Sekhar, T. V. S.
Sivakumar, R.
Ravi Kumar, T. V. R.
description Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N
doi_str_mv 10.1002/fld.1870
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33699840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33699840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</originalsourceid><addsrcrecordid>eNp10U9vFCEYx3FiauK2mvgSuNj0MhUGBoZj03-abmpiNHqSMPBgaRmoMJt13r3T7GZvnrh8nt_hC0LvKTmnhLQffXTntJfkFVpRomRDmGBHaEVaSZuWKPoGHdf6SAhRbc9W6Ne192AnnD0eze8EU7D4K8wpR1dx2owDFJwTnh4AT9vcuDBCqiEnE_HD7Eo-HPmYt9iUvEkOG2znGJKD8ha99iZWeLd_T9D3m-tvl5-a9Zfbz5cX68YywUnjiLMgnDOq63o-WC8FoRyYJ9wqEF3nJFgmhRm442YYmLeDlMpILmxvKWcn6HS3-1zynw3USY-hWojRJMibqhkTSvWcLPBsB23JtRbw-rmE0ZRZU6JfAuoloH4JuNAP-01TrYm-mGRDPfh2qSll3y2u2bltiDD_d0_frK_2u3sf6gR_D96UJy0kk53-cX-rfy4_dL9Wd_qO_QPp7I8Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33699840</pqid></control><display><type>article</type><title>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</title><source>Wiley Online Library All Journals</source><creator>Sekhar, T. V. S. ; Sivakumar, R. ; Ravi Kumar, T. V. R.</creator><creatorcontrib>Sekhar, T. V. S. ; Sivakumar, R. ; Ravi Kumar, T. V. R.</creatorcontrib><description>Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N&lt;1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1870</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; drag coefficient ; Exact sciences and technology ; Flow control ; flow-separation ; Fluid dynamics ; full MHD ; Fundamental areas of phenomenology (including applications) ; magnetic Reynolds number ; magnetohydrodynamics ; Magnetohydrodynamics and electrohydrodynamics ; Physics</subject><ispartof>International journal for numerical methods in fluids, 2009-04, Vol.59 (12), p.1351-1368</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</citedby><cites>FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1870$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1870$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22097785$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekhar, T. V. S.</creatorcontrib><creatorcontrib>Sivakumar, R.</creatorcontrib><creatorcontrib>Ravi Kumar, T. V. R.</creatorcontrib><title>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N&lt;1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>drag coefficient</subject><subject>Exact sciences and technology</subject><subject>Flow control</subject><subject>flow-separation</subject><subject>Fluid dynamics</subject><subject>full MHD</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>magnetic Reynolds number</subject><subject>magnetohydrodynamics</subject><subject>Magnetohydrodynamics and electrohydrodynamics</subject><subject>Physics</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10U9vFCEYx3FiauK2mvgSuNj0MhUGBoZj03-abmpiNHqSMPBgaRmoMJt13r3T7GZvnrh8nt_hC0LvKTmnhLQffXTntJfkFVpRomRDmGBHaEVaSZuWKPoGHdf6SAhRbc9W6Ne192AnnD0eze8EU7D4K8wpR1dx2owDFJwTnh4AT9vcuDBCqiEnE_HD7Eo-HPmYt9iUvEkOG2znGJKD8ha99iZWeLd_T9D3m-tvl5-a9Zfbz5cX68YywUnjiLMgnDOq63o-WC8FoRyYJ9wqEF3nJFgmhRm442YYmLeDlMpILmxvKWcn6HS3-1zynw3USY-hWojRJMibqhkTSvWcLPBsB23JtRbw-rmE0ZRZU6JfAuoloH4JuNAP-01TrYm-mGRDPfh2qSll3y2u2bltiDD_d0_frK_2u3sf6gR_D96UJy0kk53-cX-rfy4_dL9Wd_qO_QPp7I8Z</recordid><startdate>20090430</startdate><enddate>20090430</enddate><creator>Sekhar, T. V. S.</creator><creator>Sivakumar, R.</creator><creator>Ravi Kumar, T. V. R.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090430</creationdate><title>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</title><author>Sekhar, T. V. S. ; Sivakumar, R. ; Ravi Kumar, T. V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational methods in fluid dynamics</topic><topic>drag coefficient</topic><topic>Exact sciences and technology</topic><topic>Flow control</topic><topic>flow-separation</topic><topic>Fluid dynamics</topic><topic>full MHD</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>magnetic Reynolds number</topic><topic>magnetohydrodynamics</topic><topic>Magnetohydrodynamics and electrohydrodynamics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekhar, T. V. S.</creatorcontrib><creatorcontrib>Sivakumar, R.</creatorcontrib><creatorcontrib>Ravi Kumar, T. V. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekhar, T. V. S.</au><au>Sivakumar, R.</au><au>Ravi Kumar, T. V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2009-04-30</date><risdate>2009</risdate><volume>59</volume><issue>12</issue><spage>1351</spage><epage>1368</epage><pages>1351-1368</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N&lt;1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.1870</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2009-04, Vol.59 (12), p.1351-1368
issn 0271-2091
1097-0363
language eng
recordid cdi_proquest_miscellaneous_33699840
source Wiley Online Library All Journals
subjects Computational methods in fluid dynamics
drag coefficient
Exact sciences and technology
Flow control
flow-separation
Fluid dynamics
full MHD
Fundamental areas of phenomenology (including applications)
magnetic Reynolds number
magnetohydrodynamics
Magnetohydrodynamics and electrohydrodynamics
Physics
title Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20magnetic%20Reynolds%20number%20on%20the%20two-dimensional%20hydromagnetic%20flow%20around%20a%20cylinder&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Sekhar,%20T.%20V.%20S.&rft.date=2009-04-30&rft.volume=59&rft.issue=12&rft.spage=1351&rft.epage=1368&rft.pages=1351-1368&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1870&rft_dat=%3Cproquest_cross%3E33699840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33699840&rft_id=info:pmid/&rfr_iscdi=true