Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder
Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2009-04, Vol.59 (12), p.1351-1368 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1368 |
---|---|
container_issue | 12 |
container_start_page | 1351 |
container_title | International journal for numerical methods in fluids |
container_volume | 59 |
creator | Sekhar, T. V. S. Sivakumar, R. Ravi Kumar, T. V. R. |
description | Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N |
doi_str_mv | 10.1002/fld.1870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33699840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33699840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</originalsourceid><addsrcrecordid>eNp10U9vFCEYx3FiauK2mvgSuNj0MhUGBoZj03-abmpiNHqSMPBgaRmoMJt13r3T7GZvnrh8nt_hC0LvKTmnhLQffXTntJfkFVpRomRDmGBHaEVaSZuWKPoGHdf6SAhRbc9W6Ne192AnnD0eze8EU7D4K8wpR1dx2owDFJwTnh4AT9vcuDBCqiEnE_HD7Eo-HPmYt9iUvEkOG2znGJKD8ha99iZWeLd_T9D3m-tvl5-a9Zfbz5cX68YywUnjiLMgnDOq63o-WC8FoRyYJ9wqEF3nJFgmhRm442YYmLeDlMpILmxvKWcn6HS3-1zynw3USY-hWojRJMibqhkTSvWcLPBsB23JtRbw-rmE0ZRZU6JfAuoloH4JuNAP-01TrYm-mGRDPfh2qSll3y2u2bltiDD_d0_frK_2u3sf6gR_D96UJy0kk53-cX-rfy4_dL9Wd_qO_QPp7I8Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33699840</pqid></control><display><type>article</type><title>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</title><source>Wiley Online Library All Journals</source><creator>Sekhar, T. V. S. ; Sivakumar, R. ; Ravi Kumar, T. V. R.</creator><creatorcontrib>Sekhar, T. V. S. ; Sivakumar, R. ; Ravi Kumar, T. V. R.</creatorcontrib><description>Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N<1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1870</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; drag coefficient ; Exact sciences and technology ; Flow control ; flow-separation ; Fluid dynamics ; full MHD ; Fundamental areas of phenomenology (including applications) ; magnetic Reynolds number ; magnetohydrodynamics ; Magnetohydrodynamics and electrohydrodynamics ; Physics</subject><ispartof>International journal for numerical methods in fluids, 2009-04, Vol.59 (12), p.1351-1368</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</citedby><cites>FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1870$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1870$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22097785$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekhar, T. V. S.</creatorcontrib><creatorcontrib>Sivakumar, R.</creatorcontrib><creatorcontrib>Ravi Kumar, T. V. R.</creatorcontrib><title>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N<1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>drag coefficient</subject><subject>Exact sciences and technology</subject><subject>Flow control</subject><subject>flow-separation</subject><subject>Fluid dynamics</subject><subject>full MHD</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>magnetic Reynolds number</subject><subject>magnetohydrodynamics</subject><subject>Magnetohydrodynamics and electrohydrodynamics</subject><subject>Physics</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10U9vFCEYx3FiauK2mvgSuNj0MhUGBoZj03-abmpiNHqSMPBgaRmoMJt13r3T7GZvnrh8nt_hC0LvKTmnhLQffXTntJfkFVpRomRDmGBHaEVaSZuWKPoGHdf6SAhRbc9W6Ne192AnnD0eze8EU7D4K8wpR1dx2owDFJwTnh4AT9vcuDBCqiEnE_HD7Eo-HPmYt9iUvEkOG2znGJKD8ha99iZWeLd_T9D3m-tvl5-a9Zfbz5cX68YywUnjiLMgnDOq63o-WC8FoRyYJ9wqEF3nJFgmhRm442YYmLeDlMpILmxvKWcn6HS3-1zynw3USY-hWojRJMibqhkTSvWcLPBsB23JtRbw-rmE0ZRZU6JfAuoloH4JuNAP-01TrYm-mGRDPfh2qSll3y2u2bltiDD_d0_frK_2u3sf6gR_D96UJy0kk53-cX-rfy4_dL9Wd_qO_QPp7I8Z</recordid><startdate>20090430</startdate><enddate>20090430</enddate><creator>Sekhar, T. V. S.</creator><creator>Sivakumar, R.</creator><creator>Ravi Kumar, T. V. R.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090430</creationdate><title>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</title><author>Sekhar, T. V. S. ; Sivakumar, R. ; Ravi Kumar, T. V. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3640-d0dce6dda95584bcf76014e3f04c9e655d7ec376ab4d4abb3fcb779a746c8c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational methods in fluid dynamics</topic><topic>drag coefficient</topic><topic>Exact sciences and technology</topic><topic>Flow control</topic><topic>flow-separation</topic><topic>Fluid dynamics</topic><topic>full MHD</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>magnetic Reynolds number</topic><topic>magnetohydrodynamics</topic><topic>Magnetohydrodynamics and electrohydrodynamics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekhar, T. V. S.</creatorcontrib><creatorcontrib>Sivakumar, R.</creatorcontrib><creatorcontrib>Ravi Kumar, T. V. R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekhar, T. V. S.</au><au>Sivakumar, R.</au><au>Ravi Kumar, T. V. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2009-04-30</date><risdate>2009</risdate><volume>59</volume><issue>12</issue><spage>1351</spage><epage>1368</epage><pages>1351-1368</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N<1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.1870</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2009-04, Vol.59 (12), p.1351-1368 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_33699840 |
source | Wiley Online Library All Journals |
subjects | Computational methods in fluid dynamics drag coefficient Exact sciences and technology Flow control flow-separation Fluid dynamics full MHD Fundamental areas of phenomenology (including applications) magnetic Reynolds number magnetohydrodynamics Magnetohydrodynamics and electrohydrodynamics Physics |
title | Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20magnetic%20Reynolds%20number%20on%20the%20two-dimensional%20hydromagnetic%20flow%20around%20a%20cylinder&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Sekhar,%20T.%20V.%20S.&rft.date=2009-04-30&rft.volume=59&rft.issue=12&rft.spage=1351&rft.epage=1368&rft.pages=1351-1368&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1870&rft_dat=%3Cproquest_cross%3E33699840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33699840&rft_id=info:pmid/&rfr_iscdi=true |