Direct laser cladding of SiC dispersed AISI 316L stainless steel
The present study concerns development of SiC dispersed (5 and 20 wt%) AISI 316L stainless steel metal–matrix composites by direct laser cladding with a high power diode laser and evaluation of its mechanical properties (microhardness and wear resistance). A defect free and homogeneous composite lay...
Gespeichert in:
Veröffentlicht in: | Tribology international 2009-05, Vol.42 (5), p.750-753 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study concerns development of SiC dispersed (5 and 20 wt%) AISI 316L stainless steel metal–matrix composites by direct laser cladding with a high power diode laser and evaluation of its mechanical properties (microhardness and wear resistance). A defect free and homogeneous composite layer is formed under optimum processing condition. The microstructure consists of partially dissociated SiC, Cr
3C
2 and Fe
2Si in grain refined stainless steel matrix. The microhardness of the clad layer increases to a maximum of 340 VHN (for 5% SiC dispersed) and 800 VHN (for 20% SiC dispersed) as compared to 150 VHN of commercially available AISI 316L stainless steel. Direct laser clad SiC dispersed AISI 316L stainless steel has shown an improved wear resistance against diamond surface with a maximum improvement in 20% SiC dispersed AISI 316L stainless steel. The mechanism of wear was predominantly abrasive in nature. |
---|---|
ISSN: | 0301-679X 1879-2464 |
DOI: | 10.1016/j.triboint.2008.10.016 |