Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors
In recent years, carbon nanotubes have been utilized for a variety of applications, including nanoelectronics and various types of sensors. In particular, researchers have sought to take advantage of the superior electrical properties of carbon nanotubes for fabricating novel strain sensors. This ar...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent material systems and structures 2008-07, Vol.19 (7), p.747-764 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 764 |
---|---|
container_issue | 7 |
container_start_page | 747 |
container_title | Journal of intelligent material systems and structures |
container_volume | 19 |
creator | Loh, K.J. Lynch, J.P. Shim, B.S. Kotov, N.A. |
description | In recent years, carbon nanotubes have been utilized for a variety of applications, including nanoelectronics and various types of sensors. In particular, researchers have sought to take advantage of the superior electrical properties of carbon nanotubes for fabricating novel strain sensors. This article presents a single-walled carbon nanotube (SWNT)-polyelectrolyte (PE) composite thin film strain sensor fabricated with a layer-by-layer (LbL) process. Optimization of bulk SWNT-PE strain sensor properties is achieved by varying various LbL fabrication parameters, followed by characterization of strain-sensing electromechanical responses. A resistor and capacitor (RC)-circuit model is proposed and validated with electrical impedance spectroscopy to fit experimental results and to identify equivalent circuit element parameters sensitive to strain. Experimental results suggest consistent trends between SWNT and PE concentrations to strain sensor sensitivities. Simply by adjusting the weight fraction of SWNT solutions and film thickness, strain sensitivities between 0.1 and 1.8 have been achieved. While SWNT-PE strain sensitivity is lower than some metal-foil strain gauges ($2), the LbL method allows for precise tailoring of the properties (i.e., strain sensitivity, resistivity, among others) of a high-capacity (±10,000 μm m-1) homogeneous multilayer strain sensor. |
doi_str_mv | 10.1177/1045389X07079872 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33610446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1045389X07079872</sage_id><sourcerecordid>33610446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-3b807db8b448d6510563249a9abc3ba8677fcc291cf09860f3e6271d874b7fb93</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3j3vR2-pks9lkj7L4BfUDrCB4WJI0KSnbpCa7Qv3rTW3xIHiagfd7j3mD0CmGC4wZu8RQUsLrN2DAas6KPTTClEDOMeH7aU9yvtEP0VGMCwDMKZARep8K2_lg3Tx7tvrLBx1t7O2nzl60izZttl9n3mQPQ9fbTqx1yBoRpHfZo3C-H6TOGr9c-cQmTx-EdT9WH-IxOjCii_pkN8fo9eZ62tzlk6fb--ZqkquSQp8TyYHNJJdlyWcVxUArUpS1qIVURApeMWaUKmqsDNS8AkN0VTA846yUzMiajNH5NncV_MegY98ubVS664TTfogtIVWqX1YJhC2ogo8xaNOugl2KsG4xtJsvtn-_mCxnu2wRlehMEE7Z-OsrgKZzKU1cvuWimOt24YfgUuX_c78BtkWAHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33610446</pqid></control><display><type>article</type><title>Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors</title><source>SAGE Complete</source><creator>Loh, K.J. ; Lynch, J.P. ; Shim, B.S. ; Kotov, N.A.</creator><creatorcontrib>Loh, K.J. ; Lynch, J.P. ; Shim, B.S. ; Kotov, N.A.</creatorcontrib><description>In recent years, carbon nanotubes have been utilized for a variety of applications, including nanoelectronics and various types of sensors. In particular, researchers have sought to take advantage of the superior electrical properties of carbon nanotubes for fabricating novel strain sensors. This article presents a single-walled carbon nanotube (SWNT)-polyelectrolyte (PE) composite thin film strain sensor fabricated with a layer-by-layer (LbL) process. Optimization of bulk SWNT-PE strain sensor properties is achieved by varying various LbL fabrication parameters, followed by characterization of strain-sensing electromechanical responses. A resistor and capacitor (RC)-circuit model is proposed and validated with electrical impedance spectroscopy to fit experimental results and to identify equivalent circuit element parameters sensitive to strain. Experimental results suggest consistent trends between SWNT and PE concentrations to strain sensor sensitivities. Simply by adjusting the weight fraction of SWNT solutions and film thickness, strain sensitivities between 0.1 and 1.8 have been achieved. While SWNT-PE strain sensitivity is lower than some metal-foil strain gauges ($2), the LbL method allows for precise tailoring of the properties (i.e., strain sensitivity, resistivity, among others) of a high-capacity (±10,000 μm m-1) homogeneous multilayer strain sensor.</description><identifier>ISSN: 1045-389X</identifier><identifier>EISSN: 1530-8138</identifier><identifier>DOI: 10.1177/1045389X07079872</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Measurement and testing methods ; Physics ; Servo and control equipment; robots ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Journal of intelligent material systems and structures, 2008-07, Vol.19 (7), p.747-764</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-3b807db8b448d6510563249a9abc3ba8677fcc291cf09860f3e6271d874b7fb93</citedby><cites>FETCH-LOGICAL-c450t-3b807db8b448d6510563249a9abc3ba8677fcc291cf09860f3e6271d874b7fb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1045389X07079872$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1045389X07079872$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20505655$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loh, K.J.</creatorcontrib><creatorcontrib>Lynch, J.P.</creatorcontrib><creatorcontrib>Shim, B.S.</creatorcontrib><creatorcontrib>Kotov, N.A.</creatorcontrib><title>Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors</title><title>Journal of intelligent material systems and structures</title><description>In recent years, carbon nanotubes have been utilized for a variety of applications, including nanoelectronics and various types of sensors. In particular, researchers have sought to take advantage of the superior electrical properties of carbon nanotubes for fabricating novel strain sensors. This article presents a single-walled carbon nanotube (SWNT)-polyelectrolyte (PE) composite thin film strain sensor fabricated with a layer-by-layer (LbL) process. Optimization of bulk SWNT-PE strain sensor properties is achieved by varying various LbL fabrication parameters, followed by characterization of strain-sensing electromechanical responses. A resistor and capacitor (RC)-circuit model is proposed and validated with electrical impedance spectroscopy to fit experimental results and to identify equivalent circuit element parameters sensitive to strain. Experimental results suggest consistent trends between SWNT and PE concentrations to strain sensor sensitivities. Simply by adjusting the weight fraction of SWNT solutions and film thickness, strain sensitivities between 0.1 and 1.8 have been achieved. While SWNT-PE strain sensitivity is lower than some metal-foil strain gauges ($2), the LbL method allows for precise tailoring of the properties (i.e., strain sensitivity, resistivity, among others) of a high-capacity (±10,000 μm m-1) homogeneous multilayer strain sensor.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Measurement and testing methods</subject><subject>Physics</subject><subject>Servo and control equipment; robots</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>1045-389X</issn><issn>1530-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3j3vR2-pks9lkj7L4BfUDrCB4WJI0KSnbpCa7Qv3rTW3xIHiagfd7j3mD0CmGC4wZu8RQUsLrN2DAas6KPTTClEDOMeH7aU9yvtEP0VGMCwDMKZARep8K2_lg3Tx7tvrLBx1t7O2nzl60izZttl9n3mQPQ9fbTqx1yBoRpHfZo3C-H6TOGr9c-cQmTx-EdT9WH-IxOjCii_pkN8fo9eZ62tzlk6fb--ZqkquSQp8TyYHNJJdlyWcVxUArUpS1qIVURApeMWaUKmqsDNS8AkN0VTA846yUzMiajNH5NncV_MegY98ubVS664TTfogtIVWqX1YJhC2ogo8xaNOugl2KsG4xtJsvtn-_mCxnu2wRlehMEE7Z-OsrgKZzKU1cvuWimOt24YfgUuX_c78BtkWAHg</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Loh, K.J.</creator><creator>Lynch, J.P.</creator><creator>Shim, B.S.</creator><creator>Kotov, N.A.</creator><general>SAGE Publications</general><general>Technomic</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20080701</creationdate><title>Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors</title><author>Loh, K.J. ; Lynch, J.P. ; Shim, B.S. ; Kotov, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-3b807db8b448d6510563249a9abc3ba8677fcc291cf09860f3e6271d874b7fb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Measurement and testing methods</topic><topic>Physics</topic><topic>Servo and control equipment; robots</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loh, K.J.</creatorcontrib><creatorcontrib>Lynch, J.P.</creatorcontrib><creatorcontrib>Shim, B.S.</creatorcontrib><creatorcontrib>Kotov, N.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of intelligent material systems and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loh, K.J.</au><au>Lynch, J.P.</au><au>Shim, B.S.</au><au>Kotov, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors</atitle><jtitle>Journal of intelligent material systems and structures</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>19</volume><issue>7</issue><spage>747</spage><epage>764</epage><pages>747-764</pages><issn>1045-389X</issn><eissn>1530-8138</eissn><abstract>In recent years, carbon nanotubes have been utilized for a variety of applications, including nanoelectronics and various types of sensors. In particular, researchers have sought to take advantage of the superior electrical properties of carbon nanotubes for fabricating novel strain sensors. This article presents a single-walled carbon nanotube (SWNT)-polyelectrolyte (PE) composite thin film strain sensor fabricated with a layer-by-layer (LbL) process. Optimization of bulk SWNT-PE strain sensor properties is achieved by varying various LbL fabrication parameters, followed by characterization of strain-sensing electromechanical responses. A resistor and capacitor (RC)-circuit model is proposed and validated with electrical impedance spectroscopy to fit experimental results and to identify equivalent circuit element parameters sensitive to strain. Experimental results suggest consistent trends between SWNT and PE concentrations to strain sensor sensitivities. Simply by adjusting the weight fraction of SWNT solutions and film thickness, strain sensitivities between 0.1 and 1.8 have been achieved. While SWNT-PE strain sensitivity is lower than some metal-foil strain gauges ($2), the LbL method allows for precise tailoring of the properties (i.e., strain sensitivity, resistivity, among others) of a high-capacity (±10,000 μm m-1) homogeneous multilayer strain sensor.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1045389X07079872</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-389X |
ispartof | Journal of intelligent material systems and structures, 2008-07, Vol.19 (7), p.747-764 |
issn | 1045-389X 1530-8138 |
language | eng |
recordid | cdi_proquest_miscellaneous_33610446 |
source | SAGE Complete |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Measurement and testing methods Physics Servo and control equipment robots Solid mechanics Structural and continuum mechanics |
title | Tailoring Piezoresistive Sensitivity of Multilayer Carbon Nanotube Composite Strain Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Piezoresistive%20Sensitivity%20of%20Multilayer%20Carbon%20Nanotube%20Composite%20Strain%20Sensors&rft.jtitle=Journal%20of%20intelligent%20material%20systems%20and%20structures&rft.au=Loh,%20K.J.&rft.date=2008-07-01&rft.volume=19&rft.issue=7&rft.spage=747&rft.epage=764&rft.pages=747-764&rft.issn=1045-389X&rft.eissn=1530-8138&rft_id=info:doi/10.1177/1045389X07079872&rft_dat=%3Cproquest_cross%3E33610446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33610446&rft_id=info:pmid/&rft_sage_id=10.1177_1045389X07079872&rfr_iscdi=true |