Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers

Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH 2 –Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2008-07, Vol.43 (14), p.4849-4855
Hauptverfasser: Xiong, Liangping, Xu, Yunshu, Li, Yang, Xia, Xiulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4855
container_issue 14
container_start_page 4849
container_title Journal of materials science
container_volume 43
creator Xiong, Liangping
Xu, Yunshu
Li, Yang
Xia, Xiulong
description Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH 2 –Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10 17  cm −2 under N 2 atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.
doi_str_mv 10.1007/s10853-008-2703-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33610020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259641548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</originalsourceid><addsrcrecordid>eNp1kE1r3DAURUVoIdMkPyA7QWl3Tp4-LNvLMjRpIJBF0rV4lqVGwWNNn-zF_Ptq8JBCoau3eOdeLoexawE3AqC5zQLaWlUAbSUbUJU4YxtRN6rSLagPbAMgZSW1EefsU85vAFA3UmzY6_Nhml99jpmnwJ_jljtPuIuOh9h7yjxQ2vFpcaNH4uTRzYl4JMIh4uwHvk_jwSH1KccRJ_8e35N3C-UCr0WX7GPAMfur071gP---v2x_VI9P9w_bb4-V01rNlfataUPfKAUDeDTB1Ep3vg06aI1u0P2ASjhTS-28FDj0pkNnTINd3WGH6oJ9XXv3lH4vPs92F7Pz43FcWrJVyhRhEgr4-R_wLS00lW1WyrozWtS6LZRYKUcpZ_LB7inukA5WgD2at6t5W8zbo3krSubLqRmzwzEQTi7m96AE3akOZOHkyuXymn55-rvg_-V_AJGOlGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259641548</pqid></control><display><type>article</type><title>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiong, Liangping ; Xu, Yunshu ; Li, Yang ; Xia, Xiulong</creator><creatorcontrib>Xiong, Liangping ; Xu, Yunshu ; Li, Yang ; Xia, Xiulong</creatorcontrib><description>Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH 2 –Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10 17  cm −2 under N 2 atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-2703-1</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied sciences ; Bridges ; Building materials. Ceramics. Glasses ; Ceramic and carbon fibers ; Ceramic fibers ; Ceramic industries ; Ceramics ; Characterization and Evaluation of Materials ; Chemical industry and chemicals ; Chemistry and Materials Science ; Classical Mechanics ; Crosslinking ; Crystallography and Scattering Methods ; Exact sciences and technology ; Fluence ; Grain size ; Heat resistance ; Heat treatment ; Inert atmospheres ; Infrared spectroscopy ; Materials Science ; Mechanical properties ; Microcrystals ; Nuclear reactors ; Organic chemistry ; Oxidation ; Oxygen content ; Polymer Sciences ; Precursors ; Pyrolysis ; Silicon carbide ; Solid Mechanics ; Technical ceramics ; Tensile strength ; Thermal resistance ; X-ray diffraction</subject><ispartof>Journal of materials science, 2008-07, Vol.43 (14), p.4849-4855</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</citedby><cites>FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-2703-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-2703-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27925,27926,41489,42558,51320</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20493902$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Liangping</creatorcontrib><creatorcontrib>Xu, Yunshu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xia, Xiulong</creatorcontrib><title>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH 2 –Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10 17  cm −2 under N 2 atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.</description><subject>Applied sciences</subject><subject>Bridges</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic and carbon fibers</subject><subject>Ceramic fibers</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Crystallography and Scattering Methods</subject><subject>Exact sciences and technology</subject><subject>Fluence</subject><subject>Grain size</subject><subject>Heat resistance</subject><subject>Heat treatment</subject><subject>Inert atmospheres</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microcrystals</subject><subject>Nuclear reactors</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxygen content</subject><subject>Polymer Sciences</subject><subject>Precursors</subject><subject>Pyrolysis</subject><subject>Silicon carbide</subject><subject>Solid Mechanics</subject><subject>Technical ceramics</subject><subject>Tensile strength</subject><subject>Thermal resistance</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1r3DAURUVoIdMkPyA7QWl3Tp4-LNvLMjRpIJBF0rV4lqVGwWNNn-zF_Ptq8JBCoau3eOdeLoexawE3AqC5zQLaWlUAbSUbUJU4YxtRN6rSLagPbAMgZSW1EefsU85vAFA3UmzY6_Nhml99jpmnwJ_jljtPuIuOh9h7yjxQ2vFpcaNH4uTRzYl4JMIh4uwHvk_jwSH1KccRJ_8e35N3C-UCr0WX7GPAMfur071gP---v2x_VI9P9w_bb4-V01rNlfataUPfKAUDeDTB1Ep3vg06aI1u0P2ASjhTS-28FDj0pkNnTINd3WGH6oJ9XXv3lH4vPs92F7Pz43FcWrJVyhRhEgr4-R_wLS00lW1WyrozWtS6LZRYKUcpZ_LB7inukA5WgD2at6t5W8zbo3krSubLqRmzwzEQTi7m96AE3akOZOHkyuXymn55-rvg_-V_AJGOlGo</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Xiong, Liangping</creator><creator>Xu, Yunshu</creator><creator>Li, Yang</creator><creator>Xia, Xiulong</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080701</creationdate><title>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</title><author>Xiong, Liangping ; Xu, Yunshu ; Li, Yang ; Xia, Xiulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bridges</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic and carbon fibers</topic><topic>Ceramic fibers</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Crystallography and Scattering Methods</topic><topic>Exact sciences and technology</topic><topic>Fluence</topic><topic>Grain size</topic><topic>Heat resistance</topic><topic>Heat treatment</topic><topic>Inert atmospheres</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microcrystals</topic><topic>Nuclear reactors</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxygen content</topic><topic>Polymer Sciences</topic><topic>Precursors</topic><topic>Pyrolysis</topic><topic>Silicon carbide</topic><topic>Solid Mechanics</topic><topic>Technical ceramics</topic><topic>Tensile strength</topic><topic>Thermal resistance</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Liangping</creatorcontrib><creatorcontrib>Xu, Yunshu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xia, Xiulong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Liangping</au><au>Xu, Yunshu</au><au>Li, Yang</au><au>Xia, Xiulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>43</volume><issue>14</issue><spage>4849</spage><epage>4855</epage><pages>4849-4855</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH 2 –Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10 17  cm −2 under N 2 atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-008-2703-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2008-07, Vol.43 (14), p.4849-4855
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_33610020
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Bridges
Building materials. Ceramics. Glasses
Ceramic and carbon fibers
Ceramic fibers
Ceramic industries
Ceramics
Characterization and Evaluation of Materials
Chemical industry and chemicals
Chemistry and Materials Science
Classical Mechanics
Crosslinking
Crystallography and Scattering Methods
Exact sciences and technology
Fluence
Grain size
Heat resistance
Heat treatment
Inert atmospheres
Infrared spectroscopy
Materials Science
Mechanical properties
Microcrystals
Nuclear reactors
Organic chemistry
Oxidation
Oxygen content
Polymer Sciences
Precursors
Pyrolysis
Silicon carbide
Solid Mechanics
Technical ceramics
Tensile strength
Thermal resistance
X-ray diffraction
title Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20SiC%20ceramic%20fibers%20from%20nuclear%20reactor%20irradiated%20polycarbosilane%20ceramic%20precursor%20fibers&rft.jtitle=Journal%20of%20materials%20science&rft.au=Xiong,%20Liangping&rft.date=2008-07-01&rft.volume=43&rft.issue=14&rft.spage=4849&rft.epage=4855&rft.pages=4849-4855&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-2703-1&rft_dat=%3Cproquest_cross%3E2259641548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259641548&rft_id=info:pmid/&rfr_iscdi=true