Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers
Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH 2 –Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2008-07, Vol.43 (14), p.4849-4855 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4855 |
---|---|
container_issue | 14 |
container_start_page | 4849 |
container_title | Journal of materials science |
container_volume | 43 |
creator | Xiong, Liangping Xu, Yunshu Li, Yang Xia, Xiulong |
description | Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH
2
–Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10
17
cm
−2
under N
2
atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious. |
doi_str_mv | 10.1007/s10853-008-2703-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33610020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259641548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</originalsourceid><addsrcrecordid>eNp1kE1r3DAURUVoIdMkPyA7QWl3Tp4-LNvLMjRpIJBF0rV4lqVGwWNNn-zF_Ptq8JBCoau3eOdeLoexawE3AqC5zQLaWlUAbSUbUJU4YxtRN6rSLagPbAMgZSW1EefsU85vAFA3UmzY6_Nhml99jpmnwJ_jljtPuIuOh9h7yjxQ2vFpcaNH4uTRzYl4JMIh4uwHvk_jwSH1KccRJ_8e35N3C-UCr0WX7GPAMfur071gP---v2x_VI9P9w_bb4-V01rNlfataUPfKAUDeDTB1Ep3vg06aI1u0P2ASjhTS-28FDj0pkNnTINd3WGH6oJ9XXv3lH4vPs92F7Pz43FcWrJVyhRhEgr4-R_wLS00lW1WyrozWtS6LZRYKUcpZ_LB7inukA5WgD2at6t5W8zbo3krSubLqRmzwzEQTi7m96AE3akOZOHkyuXymn55-rvg_-V_AJGOlGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259641548</pqid></control><display><type>article</type><title>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiong, Liangping ; Xu, Yunshu ; Li, Yang ; Xia, Xiulong</creator><creatorcontrib>Xiong, Liangping ; Xu, Yunshu ; Li, Yang ; Xia, Xiulong</creatorcontrib><description>Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH
2
–Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10
17
cm
−2
under N
2
atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-2703-1</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied sciences ; Bridges ; Building materials. Ceramics. Glasses ; Ceramic and carbon fibers ; Ceramic fibers ; Ceramic industries ; Ceramics ; Characterization and Evaluation of Materials ; Chemical industry and chemicals ; Chemistry and Materials Science ; Classical Mechanics ; Crosslinking ; Crystallography and Scattering Methods ; Exact sciences and technology ; Fluence ; Grain size ; Heat resistance ; Heat treatment ; Inert atmospheres ; Infrared spectroscopy ; Materials Science ; Mechanical properties ; Microcrystals ; Nuclear reactors ; Organic chemistry ; Oxidation ; Oxygen content ; Polymer Sciences ; Precursors ; Pyrolysis ; Silicon carbide ; Solid Mechanics ; Technical ceramics ; Tensile strength ; Thermal resistance ; X-ray diffraction</subject><ispartof>Journal of materials science, 2008-07, Vol.43 (14), p.4849-4855</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2008). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</citedby><cites>FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-2703-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-2703-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27925,27926,41489,42558,51320</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20493902$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiong, Liangping</creatorcontrib><creatorcontrib>Xu, Yunshu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xia, Xiulong</creatorcontrib><title>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH
2
–Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10
17
cm
−2
under N
2
atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.</description><subject>Applied sciences</subject><subject>Bridges</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic and carbon fibers</subject><subject>Ceramic fibers</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical industry and chemicals</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crosslinking</subject><subject>Crystallography and Scattering Methods</subject><subject>Exact sciences and technology</subject><subject>Fluence</subject><subject>Grain size</subject><subject>Heat resistance</subject><subject>Heat treatment</subject><subject>Inert atmospheres</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microcrystals</subject><subject>Nuclear reactors</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxygen content</subject><subject>Polymer Sciences</subject><subject>Precursors</subject><subject>Pyrolysis</subject><subject>Silicon carbide</subject><subject>Solid Mechanics</subject><subject>Technical ceramics</subject><subject>Tensile strength</subject><subject>Thermal resistance</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1r3DAURUVoIdMkPyA7QWl3Tp4-LNvLMjRpIJBF0rV4lqVGwWNNn-zF_Ptq8JBCoau3eOdeLoexawE3AqC5zQLaWlUAbSUbUJU4YxtRN6rSLagPbAMgZSW1EefsU85vAFA3UmzY6_Nhml99jpmnwJ_jljtPuIuOh9h7yjxQ2vFpcaNH4uTRzYl4JMIh4uwHvk_jwSH1KccRJ_8e35N3C-UCr0WX7GPAMfur071gP---v2x_VI9P9w_bb4-V01rNlfataUPfKAUDeDTB1Ep3vg06aI1u0P2ASjhTS-28FDj0pkNnTINd3WGH6oJ9XXv3lH4vPs92F7Pz43FcWrJVyhRhEgr4-R_wLS00lW1WyrozWtS6LZRYKUcpZ_LB7inukA5WgD2at6t5W8zbo3krSubLqRmzwzEQTi7m96AE3akOZOHkyuXymn55-rvg_-V_AJGOlGo</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Xiong, Liangping</creator><creator>Xu, Yunshu</creator><creator>Li, Yang</creator><creator>Xia, Xiulong</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080701</creationdate><title>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</title><author>Xiong, Liangping ; Xu, Yunshu ; Li, Yang ; Xia, Xiulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4e868fb7330d0ea6f65349e8f4f44acd4bda31c6524ce21adb69ac667a959a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bridges</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic and carbon fibers</topic><topic>Ceramic fibers</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical industry and chemicals</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crosslinking</topic><topic>Crystallography and Scattering Methods</topic><topic>Exact sciences and technology</topic><topic>Fluence</topic><topic>Grain size</topic><topic>Heat resistance</topic><topic>Heat treatment</topic><topic>Inert atmospheres</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microcrystals</topic><topic>Nuclear reactors</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxygen content</topic><topic>Polymer Sciences</topic><topic>Precursors</topic><topic>Pyrolysis</topic><topic>Silicon carbide</topic><topic>Solid Mechanics</topic><topic>Technical ceramics</topic><topic>Tensile strength</topic><topic>Thermal resistance</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Liangping</creatorcontrib><creatorcontrib>Xu, Yunshu</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xia, Xiulong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Liangping</au><au>Xu, Yunshu</au><au>Li, Yang</au><au>Xia, Xiulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-07-01</date><risdate>2008</risdate><volume>43</volume><issue>14</issue><spage>4849</spage><epage>4855</epage><pages>4849-4855</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Polycarbosilane (PCS) ceramic precursor fibers are irradiated in a nuclear reactor and pyrolyzed under inert atmosphere. Bridge structure of Si–CH
2
–Si is formed in the irradiated products by the rupture of Si–H bonds and succeeding cross-linking. When irradiated at the neutron fluence of 2.2 × 10
17
cm
−2
under N
2
atmosphere, the gel content and ceramic yield at 1,273 K of PCS fibers are up to 80% and 94.3%, respectively, and their pyrolysis products are still fibrous, which illuminates that the infusibility of PCS fibers has been achieved. FT-IR spectra indicate that the chemical structure of pyrolysis products is very similar to that of pure SiC, while X-ray diffraction curves suggest that β-SiC microcrystals are formed in the fibers, and their mean grain size is about 7.5 nm. The oxygen content (1.69–3.77 wt%) is much lower than that of conventional SiC fibers by oxidation curing method (about 15 wt%). Tensile strength of the SiC fibers is up to 2.72 GPa, which demonstrates that their mechanical properties are excellent. After heat-treated at 1,673 K in air for an hour or at 1,873 K under Ar gas atmosphere for 0.5 h, their external appearance is still undamaged and dense, and their tensile strength decreases to a small extent, which verifies that heat resistance of the SiC fibers is eximious.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-008-2703-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2008-07, Vol.43 (14), p.4849-4855 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_33610020 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Bridges Building materials. Ceramics. Glasses Ceramic and carbon fibers Ceramic fibers Ceramic industries Ceramics Characterization and Evaluation of Materials Chemical industry and chemicals Chemistry and Materials Science Classical Mechanics Crosslinking Crystallography and Scattering Methods Exact sciences and technology Fluence Grain size Heat resistance Heat treatment Inert atmospheres Infrared spectroscopy Materials Science Mechanical properties Microcrystals Nuclear reactors Organic chemistry Oxidation Oxygen content Polymer Sciences Precursors Pyrolysis Silicon carbide Solid Mechanics Technical ceramics Tensile strength Thermal resistance X-ray diffraction |
title | Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20SiC%20ceramic%20fibers%20from%20nuclear%20reactor%20irradiated%20polycarbosilane%20ceramic%20precursor%20fibers&rft.jtitle=Journal%20of%20materials%20science&rft.au=Xiong,%20Liangping&rft.date=2008-07-01&rft.volume=43&rft.issue=14&rft.spage=4849&rft.epage=4855&rft.pages=4849-4855&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-2703-1&rft_dat=%3Cproquest_cross%3E2259641548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259641548&rft_id=info:pmid/&rfr_iscdi=true |