Wittrick-Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters
The well‐established Wittrick–Williams algorithm is used to derive novel and general proofs that show that the eigenvalues of systems with constraints can be bracketed by replacing the constraints by positive and negative pairs of either ordinary or inertial penalty parameters. It is also shown that...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2008-07, Vol.75 (1), p.83-102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | International journal for numerical methods in engineering |
container_volume | 75 |
creator | Ilanko, S. Williams, F. W. |
description | The well‐established Wittrick–Williams algorithm is used to derive novel and general proofs that show that the eigenvalues of systems with constraints can be bracketed by replacing the constraints by positive and negative pairs of either ordinary or inertial penalty parameters. It is also shown that convergence occurs from both above and below when the numerical values of these parameters are increased towards infinity. The proofs are applicable in many contexts but are derived in that of structural systems, for which the eigenvalues are either buckling load factors or the squares of natural frequencies of vibration; ordinary penalty parameters are stiffnesses of translational and rotational springs; and inertial penalty parameters are either masses or rotary inertias. The penalty parameters can be used to constrain a system or to impose constraints between systems. It is shown that the use of inertial penalty parameters has several advantages compared with using ordinary ones. Then the pth eigenvalue of a system with n constraints is bounded closely from above by the (p+n)th eigenvalue of the system with very large positive inertial penalty parameters and from below by the pth eigenvalue, when large negative values are used instead. This work is expected to enhance the versatility of numerical eigenproblem methods, e.g. the Rayleigh–Ritz method. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2247 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33605205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33605205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3647-fea33eecf3cbe9270b64ffce2eb2010968790e63ac9d690302d4bfcba9c094123</originalsourceid><addsrcrecordid>eNp1kdtuEzEQhlcIJEKpxCP4BsTNtrP2HrKXtCptpXYRgiqX1qwzTk283sV2UvI2PCpOE_UOyZIP880n23-WfSjgrADg526gM87L5lU2K6BtcuDQvM5mqdTmVTsv3mbvQvgFUBQViFn2d2Fi9Eat84Wx1uAQGNrV6E18HNjkx1GzNHqPak3RuBVDt2RqdFvyK3KKWHyk0VNq06NnZNLhFu2Gwr4tcSF6NI6WLC02Km58qjwlOZvGYKLZ0rPQ0QqfNxM5tHHHJvQ4UCQf3mdvNNpAp8f5JHv4evXz8ia_-3Z9e_nlLleiLptcEwpBpLRQPbW8gb4utVbEqeeQPqKeNy1QLVC1y7oFAXxZ9lr12Cpoy4KLk-zTwZse_TvdP8rBBEXWoqNxE6QQNVQcqgR-PoDKjyF40nLyZkC_kwXIfQQyRSD3EST049GJQaHVHp0y4YXnUFZz0ZSJyw_ck7G0-69PdvdXR--RNyHSnxce_VrWjWgqueiu5Y_i4uJ713VyLv4B9_ypiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33605205</pqid></control><display><type>article</type><title>Wittrick-Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ilanko, S. ; Williams, F. W.</creator><creatorcontrib>Ilanko, S. ; Williams, F. W.</creatorcontrib><description>The well‐established Wittrick–Williams algorithm is used to derive novel and general proofs that show that the eigenvalues of systems with constraints can be bracketed by replacing the constraints by positive and negative pairs of either ordinary or inertial penalty parameters. It is also shown that convergence occurs from both above and below when the numerical values of these parameters are increased towards infinity. The proofs are applicable in many contexts but are derived in that of structural systems, for which the eigenvalues are either buckling load factors or the squares of natural frequencies of vibration; ordinary penalty parameters are stiffnesses of translational and rotational springs; and inertial penalty parameters are either masses or rotary inertias. The penalty parameters can be used to constrain a system or to impose constraints between systems. It is shown that the use of inertial penalty parameters has several advantages compared with using ordinary ones. Then the pth eigenvalue of a system with n constraints is bounded closely from above by the (p+n)th eigenvalue of the system with very large positive inertial penalty parameters and from below by the pth eigenvalue, when large negative values are used instead. This work is expected to enhance the versatility of numerical eigenproblem methods, e.g. the Rayleigh–Ritz method. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2247</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Buckling ; Computational techniques ; eigenvalues ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; penalty parameter ; Physics ; Rayleigh-Ritz method ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Wittrick-Williams algorithm</subject><ispartof>International journal for numerical methods in engineering, 2008-07, Vol.75 (1), p.83-102</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3647-fea33eecf3cbe9270b64ffce2eb2010968790e63ac9d690302d4bfcba9c094123</citedby><cites>FETCH-LOGICAL-c3647-fea33eecf3cbe9270b64ffce2eb2010968790e63ac9d690302d4bfcba9c094123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2247$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2247$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20458374$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ilanko, S.</creatorcontrib><creatorcontrib>Williams, F. W.</creatorcontrib><title>Wittrick-Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The well‐established Wittrick–Williams algorithm is used to derive novel and general proofs that show that the eigenvalues of systems with constraints can be bracketed by replacing the constraints by positive and negative pairs of either ordinary or inertial penalty parameters. It is also shown that convergence occurs from both above and below when the numerical values of these parameters are increased towards infinity. The proofs are applicable in many contexts but are derived in that of structural systems, for which the eigenvalues are either buckling load factors or the squares of natural frequencies of vibration; ordinary penalty parameters are stiffnesses of translational and rotational springs; and inertial penalty parameters are either masses or rotary inertias. The penalty parameters can be used to constrain a system or to impose constraints between systems. It is shown that the use of inertial penalty parameters has several advantages compared with using ordinary ones. Then the pth eigenvalue of a system with n constraints is bounded closely from above by the (p+n)th eigenvalue of the system with very large positive inertial penalty parameters and from below by the pth eigenvalue, when large negative values are used instead. This work is expected to enhance the versatility of numerical eigenproblem methods, e.g. the Rayleigh–Ritz method. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Buckling</subject><subject>Computational techniques</subject><subject>eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>penalty parameter</subject><subject>Physics</subject><subject>Rayleigh-Ritz method</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Wittrick-Williams algorithm</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kdtuEzEQhlcIJEKpxCP4BsTNtrP2HrKXtCptpXYRgiqX1qwzTk283sV2UvI2PCpOE_UOyZIP880n23-WfSjgrADg526gM87L5lU2K6BtcuDQvM5mqdTmVTsv3mbvQvgFUBQViFn2d2Fi9Eat84Wx1uAQGNrV6E18HNjkx1GzNHqPak3RuBVDt2RqdFvyK3KKWHyk0VNq06NnZNLhFu2Gwr4tcSF6NI6WLC02Km58qjwlOZvGYKLZ0rPQ0QqfNxM5tHHHJvQ4UCQf3mdvNNpAp8f5JHv4evXz8ia_-3Z9e_nlLleiLptcEwpBpLRQPbW8gb4utVbEqeeQPqKeNy1QLVC1y7oFAXxZ9lr12Cpoy4KLk-zTwZse_TvdP8rBBEXWoqNxE6QQNVQcqgR-PoDKjyF40nLyZkC_kwXIfQQyRSD3EST049GJQaHVHp0y4YXnUFZz0ZSJyw_ck7G0-69PdvdXR--RNyHSnxce_VrWjWgqueiu5Y_i4uJ713VyLv4B9_ypiQ</recordid><startdate>20080702</startdate><enddate>20080702</enddate><creator>Ilanko, S.</creator><creator>Williams, F. W.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080702</creationdate><title>Wittrick-Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters</title><author>Ilanko, S. ; Williams, F. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3647-fea33eecf3cbe9270b64ffce2eb2010968790e63ac9d690302d4bfcba9c094123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Buckling</topic><topic>Computational techniques</topic><topic>eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>penalty parameter</topic><topic>Physics</topic><topic>Rayleigh-Ritz method</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Wittrick-Williams algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilanko, S.</creatorcontrib><creatorcontrib>Williams, F. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilanko, S.</au><au>Williams, F. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wittrick-Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2008-07-02</date><risdate>2008</risdate><volume>75</volume><issue>1</issue><spage>83</spage><epage>102</epage><pages>83-102</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The well‐established Wittrick–Williams algorithm is used to derive novel and general proofs that show that the eigenvalues of systems with constraints can be bracketed by replacing the constraints by positive and negative pairs of either ordinary or inertial penalty parameters. It is also shown that convergence occurs from both above and below when the numerical values of these parameters are increased towards infinity. The proofs are applicable in many contexts but are derived in that of structural systems, for which the eigenvalues are either buckling load factors or the squares of natural frequencies of vibration; ordinary penalty parameters are stiffnesses of translational and rotational springs; and inertial penalty parameters are either masses or rotary inertias. The penalty parameters can be used to constrain a system or to impose constraints between systems. It is shown that the use of inertial penalty parameters has several advantages compared with using ordinary ones. Then the pth eigenvalue of a system with n constraints is bounded closely from above by the (p+n)th eigenvalue of the system with very large positive inertial penalty parameters and from below by the pth eigenvalue, when large negative values are used instead. This work is expected to enhance the versatility of numerical eigenproblem methods, e.g. the Rayleigh–Ritz method. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2247</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2008-07, Vol.75 (1), p.83-102 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_33605205 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Buckling Computational techniques eigenvalues Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical methods in physics penalty parameter Physics Rayleigh-Ritz method Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Wittrick-Williams algorithm |
title | Wittrick-Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wittrick-Williams%20algorithm%20proof%20of%20bracketing%20and%20convergence%20theorems%20for%20eigenvalues%20of%20constrained%20structures%20with%20positive%20and%20negative%20penalty%20parameters&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ilanko,%20S.&rft.date=2008-07-02&rft.volume=75&rft.issue=1&rft.spage=83&rft.epage=102&rft.pages=83-102&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2247&rft_dat=%3Cproquest_cross%3E33605205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33605205&rft_id=info:pmid/&rfr_iscdi=true |