The crystallization and physical properties of Al-doped ZnO nanoparticles
Un-doped Al (0–9 at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-dop...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2008-07, Vol.254 (18), p.5791-5795 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5795 |
---|---|
container_issue | 18 |
container_start_page | 5791 |
container_title | Applied surface science |
container_volume | 254 |
creator | Chen, K.J. Fang, T.H. Hung, F.Y. Ji, L.W. Chang, S.J. Young, S.J. Hsiao, Y.J. |
description | Un-doped Al (0–9
at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800
°C for 1
h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14
nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al
=
5
at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles. |
doi_str_mv | 10.1016/j.apsusc.2008.03.080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33603387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433208006120</els_id><sourcerecordid>33603387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</originalsourceid><addsrcrecordid>eNp9UD1rwzAQFaWFpmn_QQct7WZXsmRHWQoh9CMQyJIuXYR8PhMFx3Z1TiH99VVI6NjpOO593HuM3UuRSiGLp23qetoTpJkQJhUqFUZcsJE0E5XkudGXbBRh00QrlV2zG6KtEDKL1xFbrDfIIRxocE3jf9zgu5a7tuL95kAeXMP70PUYBo_Eu5rPmqSKe8U_2xVvXdv1Lt6gQbplV7VrCO_Oc8w-Xl_W8_dkuXpbzGfLBKL9kACWNQpZF1qKclJnpQMjM6nQQGFKlJAXJtMuN6DyqpKldhpxqirIs4kpZK7G7PGkGx_72iMNducJsGlci92erFKFUCqGGzN9AkLoiALWtg9-58LBSmGPvdmtPfVmj71ZoWzsLdIezvqOYv46uBY8_XEzoZXIlY645xMOY9hvj8ESeGwBKx8QBlt1_n-jX7-9hiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33603387</pqid></control><display><type>article</type><title>The crystallization and physical properties of Al-doped ZnO nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, K.J. ; Fang, T.H. ; Hung, F.Y. ; Ji, L.W. ; Chang, S.J. ; Young, S.J. ; Hsiao, Y.J.</creator><creatorcontrib>Chen, K.J. ; Fang, T.H. ; Hung, F.Y. ; Ji, L.W. ; Chang, S.J. ; Young, S.J. ; Hsiao, Y.J.</creatorcontrib><description>Un-doped Al (0–9
at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800
°C for 1
h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14
nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al
=
5
at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2008.03.080</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clusters, nanoparticles, and nanocrystalline materials ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Exact sciences and technology ; Ii-vi semiconductors ; Materials science ; Materials synthesis; materials processing ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Photoluminescence ; Physics ; Single-crystal and powder diffraction ; Sol-gel processing, precipitation ; Sol–gel ; Structure of solids and liquids; crystallography ; X-ray diffraction and scattering ; ZnO</subject><ispartof>Applied surface science, 2008-07, Vol.254 (18), p.5791-5795</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</citedby><cites>FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433208006120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20430534$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Fang, T.H.</creatorcontrib><creatorcontrib>Hung, F.Y.</creatorcontrib><creatorcontrib>Ji, L.W.</creatorcontrib><creatorcontrib>Chang, S.J.</creatorcontrib><creatorcontrib>Young, S.J.</creatorcontrib><creatorcontrib>Hsiao, Y.J.</creatorcontrib><title>The crystallization and physical properties of Al-doped ZnO nanoparticles</title><title>Applied surface science</title><description>Un-doped Al (0–9
at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800
°C for 1
h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14
nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al
=
5
at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.</description><subject>Clusters, nanoparticles, and nanocrystalline materials</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Ii-vi semiconductors</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Single-crystal and powder diffraction</subject><subject>Sol-gel processing, precipitation</subject><subject>Sol–gel</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction and scattering</subject><subject>ZnO</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UD1rwzAQFaWFpmn_QQct7WZXsmRHWQoh9CMQyJIuXYR8PhMFx3Z1TiH99VVI6NjpOO593HuM3UuRSiGLp23qetoTpJkQJhUqFUZcsJE0E5XkudGXbBRh00QrlV2zG6KtEDKL1xFbrDfIIRxocE3jf9zgu5a7tuL95kAeXMP70PUYBo_Eu5rPmqSKe8U_2xVvXdv1Lt6gQbplV7VrCO_Oc8w-Xl_W8_dkuXpbzGfLBKL9kACWNQpZF1qKclJnpQMjM6nQQGFKlJAXJtMuN6DyqpKldhpxqirIs4kpZK7G7PGkGx_72iMNducJsGlci92erFKFUCqGGzN9AkLoiALWtg9-58LBSmGPvdmtPfVmj71ZoWzsLdIezvqOYv46uBY8_XEzoZXIlY645xMOY9hvj8ESeGwBKx8QBlt1_n-jX7-9hiw</recordid><startdate>20080715</startdate><enddate>20080715</enddate><creator>Chen, K.J.</creator><creator>Fang, T.H.</creator><creator>Hung, F.Y.</creator><creator>Ji, L.W.</creator><creator>Chang, S.J.</creator><creator>Young, S.J.</creator><creator>Hsiao, Y.J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080715</creationdate><title>The crystallization and physical properties of Al-doped ZnO nanoparticles</title><author>Chen, K.J. ; Fang, T.H. ; Hung, F.Y. ; Ji, L.W. ; Chang, S.J. ; Young, S.J. ; Hsiao, Y.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clusters, nanoparticles, and nanocrystalline materials</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Ii-vi semiconductors</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Single-crystal and powder diffraction</topic><topic>Sol-gel processing, precipitation</topic><topic>Sol–gel</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction and scattering</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Fang, T.H.</creatorcontrib><creatorcontrib>Hung, F.Y.</creatorcontrib><creatorcontrib>Ji, L.W.</creatorcontrib><creatorcontrib>Chang, S.J.</creatorcontrib><creatorcontrib>Young, S.J.</creatorcontrib><creatorcontrib>Hsiao, Y.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, K.J.</au><au>Fang, T.H.</au><au>Hung, F.Y.</au><au>Ji, L.W.</au><au>Chang, S.J.</au><au>Young, S.J.</au><au>Hsiao, Y.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The crystallization and physical properties of Al-doped ZnO nanoparticles</atitle><jtitle>Applied surface science</jtitle><date>2008-07-15</date><risdate>2008</risdate><volume>254</volume><issue>18</issue><spage>5791</spage><epage>5795</epage><pages>5791-5795</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Un-doped Al (0–9
at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800
°C for 1
h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14
nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al
=
5
at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2008.03.080</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2008-07, Vol.254 (18), p.5791-5795 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_33603387 |
source | Elsevier ScienceDirect Journals |
subjects | Clusters, nanoparticles, and nanocrystalline materials Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystallization Exact sciences and technology Ii-vi semiconductors Materials science Materials synthesis materials processing Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Photoluminescence Physics Single-crystal and powder diffraction Sol-gel processing, precipitation Sol–gel Structure of solids and liquids crystallography X-ray diffraction and scattering ZnO |
title | The crystallization and physical properties of Al-doped ZnO nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20crystallization%20and%20physical%20properties%20of%20Al-doped%20ZnO%20nanoparticles&rft.jtitle=Applied%20surface%20science&rft.au=Chen,%20K.J.&rft.date=2008-07-15&rft.volume=254&rft.issue=18&rft.spage=5791&rft.epage=5795&rft.pages=5791-5795&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2008.03.080&rft_dat=%3Cproquest_cross%3E33603387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33603387&rft_id=info:pmid/&rft_els_id=S0169433208006120&rfr_iscdi=true |