The crystallization and physical properties of Al-doped ZnO nanoparticles

Un-doped Al (0–9 at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-dop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2008-07, Vol.254 (18), p.5791-5795
Hauptverfasser: Chen, K.J., Fang, T.H., Hung, F.Y., Ji, L.W., Chang, S.J., Young, S.J., Hsiao, Y.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5795
container_issue 18
container_start_page 5791
container_title Applied surface science
container_volume 254
creator Chen, K.J.
Fang, T.H.
Hung, F.Y.
Ji, L.W.
Chang, S.J.
Young, S.J.
Hsiao, Y.J.
description Un-doped Al (0–9 at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.
doi_str_mv 10.1016/j.apsusc.2008.03.080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33603387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433208006120</els_id><sourcerecordid>33603387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</originalsourceid><addsrcrecordid>eNp9UD1rwzAQFaWFpmn_QQct7WZXsmRHWQoh9CMQyJIuXYR8PhMFx3Z1TiH99VVI6NjpOO593HuM3UuRSiGLp23qetoTpJkQJhUqFUZcsJE0E5XkudGXbBRh00QrlV2zG6KtEDKL1xFbrDfIIRxocE3jf9zgu5a7tuL95kAeXMP70PUYBo_Eu5rPmqSKe8U_2xVvXdv1Lt6gQbplV7VrCO_Oc8w-Xl_W8_dkuXpbzGfLBKL9kACWNQpZF1qKclJnpQMjM6nQQGFKlJAXJtMuN6DyqpKldhpxqirIs4kpZK7G7PGkGx_72iMNducJsGlci92erFKFUCqGGzN9AkLoiALWtg9-58LBSmGPvdmtPfVmj71ZoWzsLdIezvqOYv46uBY8_XEzoZXIlY645xMOY9hvj8ESeGwBKx8QBlt1_n-jX7-9hiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33603387</pqid></control><display><type>article</type><title>The crystallization and physical properties of Al-doped ZnO nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, K.J. ; Fang, T.H. ; Hung, F.Y. ; Ji, L.W. ; Chang, S.J. ; Young, S.J. ; Hsiao, Y.J.</creator><creatorcontrib>Chen, K.J. ; Fang, T.H. ; Hung, F.Y. ; Ji, L.W. ; Chang, S.J. ; Young, S.J. ; Hsiao, Y.J.</creatorcontrib><description>Un-doped Al (0–9 at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2008.03.080</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Clusters, nanoparticles, and nanocrystalline materials ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization ; Exact sciences and technology ; Ii-vi semiconductors ; Materials science ; Materials synthesis; materials processing ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Photoluminescence ; Physics ; Single-crystal and powder diffraction ; Sol-gel processing, precipitation ; Sol–gel ; Structure of solids and liquids; crystallography ; X-ray diffraction and scattering ; ZnO</subject><ispartof>Applied surface science, 2008-07, Vol.254 (18), p.5791-5795</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</citedby><cites>FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433208006120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20430534$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Fang, T.H.</creatorcontrib><creatorcontrib>Hung, F.Y.</creatorcontrib><creatorcontrib>Ji, L.W.</creatorcontrib><creatorcontrib>Chang, S.J.</creatorcontrib><creatorcontrib>Young, S.J.</creatorcontrib><creatorcontrib>Hsiao, Y.J.</creatorcontrib><title>The crystallization and physical properties of Al-doped ZnO nanoparticles</title><title>Applied surface science</title><description>Un-doped Al (0–9 at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.</description><subject>Clusters, nanoparticles, and nanocrystalline materials</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Ii-vi semiconductors</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Single-crystal and powder diffraction</subject><subject>Sol-gel processing, precipitation</subject><subject>Sol–gel</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction and scattering</subject><subject>ZnO</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UD1rwzAQFaWFpmn_QQct7WZXsmRHWQoh9CMQyJIuXYR8PhMFx3Z1TiH99VVI6NjpOO593HuM3UuRSiGLp23qetoTpJkQJhUqFUZcsJE0E5XkudGXbBRh00QrlV2zG6KtEDKL1xFbrDfIIRxocE3jf9zgu5a7tuL95kAeXMP70PUYBo_Eu5rPmqSKe8U_2xVvXdv1Lt6gQbplV7VrCO_Oc8w-Xl_W8_dkuXpbzGfLBKL9kACWNQpZF1qKclJnpQMjM6nQQGFKlJAXJtMuN6DyqpKldhpxqirIs4kpZK7G7PGkGx_72iMNducJsGlci92erFKFUCqGGzN9AkLoiALWtg9-58LBSmGPvdmtPfVmj71ZoWzsLdIezvqOYv46uBY8_XEzoZXIlY645xMOY9hvj8ESeGwBKx8QBlt1_n-jX7-9hiw</recordid><startdate>20080715</startdate><enddate>20080715</enddate><creator>Chen, K.J.</creator><creator>Fang, T.H.</creator><creator>Hung, F.Y.</creator><creator>Ji, L.W.</creator><creator>Chang, S.J.</creator><creator>Young, S.J.</creator><creator>Hsiao, Y.J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080715</creationdate><title>The crystallization and physical properties of Al-doped ZnO nanoparticles</title><author>Chen, K.J. ; Fang, T.H. ; Hung, F.Y. ; Ji, L.W. ; Chang, S.J. ; Young, S.J. ; Hsiao, Y.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-cebfe01f6410b7f2bac81213e8c68be1c56824a58c35dd1b4a4ee93dc52786153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Clusters, nanoparticles, and nanocrystalline materials</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Ii-vi semiconductors</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Single-crystal and powder diffraction</topic><topic>Sol-gel processing, precipitation</topic><topic>Sol–gel</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction and scattering</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, K.J.</creatorcontrib><creatorcontrib>Fang, T.H.</creatorcontrib><creatorcontrib>Hung, F.Y.</creatorcontrib><creatorcontrib>Ji, L.W.</creatorcontrib><creatorcontrib>Chang, S.J.</creatorcontrib><creatorcontrib>Young, S.J.</creatorcontrib><creatorcontrib>Hsiao, Y.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, K.J.</au><au>Fang, T.H.</au><au>Hung, F.Y.</au><au>Ji, L.W.</au><au>Chang, S.J.</au><au>Young, S.J.</au><au>Hsiao, Y.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The crystallization and physical properties of Al-doped ZnO nanoparticles</atitle><jtitle>Applied surface science</jtitle><date>2008-07-15</date><risdate>2008</risdate><volume>254</volume><issue>18</issue><spage>5791</spage><epage>5795</epage><pages>5791-5795</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>Un-doped Al (0–9 at.%) nanoparticles and doped ZnO powders were prepared by the sol–gel method. The nanoparticles were heated at 700–800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2008.03.080</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2008-07, Vol.254 (18), p.5791-5795
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_33603387
source Elsevier ScienceDirect Journals
subjects Clusters, nanoparticles, and nanocrystalline materials
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallization
Exact sciences and technology
Ii-vi semiconductors
Materials science
Materials synthesis
materials processing
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Photoluminescence
Physics
Single-crystal and powder diffraction
Sol-gel processing, precipitation
Sol–gel
Structure of solids and liquids
crystallography
X-ray diffraction and scattering
ZnO
title The crystallization and physical properties of Al-doped ZnO nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20crystallization%20and%20physical%20properties%20of%20Al-doped%20ZnO%20nanoparticles&rft.jtitle=Applied%20surface%20science&rft.au=Chen,%20K.J.&rft.date=2008-07-15&rft.volume=254&rft.issue=18&rft.spage=5791&rft.epage=5795&rft.pages=5791-5795&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2008.03.080&rft_dat=%3Cproquest_cross%3E33603387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33603387&rft_id=info:pmid/&rft_els_id=S0169433208006120&rfr_iscdi=true