Thrust Force and Wear Assessment When Drilling Glass Fiber-Reinforced Polymeric Composite

The principal aim of this article is to investigate the influence of the drilling parameters and tool material/coating (high speed steel and plain and coated carbide) on the thrust force and tool wear when drilling glass fiber reinforced epoxy composite. In order to predict the performance of the cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composite materials 2008-07, Vol.42 (14), p.1401-1414
Hauptverfasser: Faria, P.E., Campos, R.F., Abrão, A.M., Godoy, G.C.D., Davim, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principal aim of this article is to investigate the influence of the drilling parameters and tool material/coating (high speed steel and plain and coated carbide) on the thrust force and tool wear when drilling glass fiber reinforced epoxy composite. In order to predict the performance of the cutting tools in the industrial environment, extended drilling tests (up to 24000 holes) were conducted and the influence of changes in the geometry of the drills on the thrust force was assessed. The results indicated that the high speed steel tool presented remarkable wear rates, which drastically altered its edge preparation and resulted in a thrust force of 492 N after 1000 holes. In opposition to that, the cemented carbide drill presented superior wear resistance, with a thrust force of 147N after drilling 24000 holes. Finally, the use of the titanium nitride coated drill did not offer a significant contribution neither to the tool wear resistance nor to the machining thrust force.
ISSN:0021-9983
1530-793X
DOI:10.1177/0021998308090456