Silicon nanowire sensor array using top–down CMOS technology
The paper elaborates the silicon nanowire (SiNW) arrays fabrication using standard CMOS compatible technologies (top–down) with each array consisting of 100 wires, which are individually electrically measurable for their conductance and facilitating statistical analysis. To facilitate real-time anal...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2008-07, Vol.145-146, p.207-213 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | |
container_start_page | 207 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 145-146 |
creator | Agarwal, Ajay Buddharaju, K. Lao, I.K. Singh, N. Balasubramanian, N. Kwong, D.L. |
description | The paper elaborates the silicon nanowire (SiNW) arrays fabrication using standard CMOS compatible technologies (top–down) with each array consisting of 100 wires, which are individually electrically measurable for their conductance and facilitating statistical analysis. To facilitate real-time analysis, the arrays are integrated with micro-fluidics for the delivery of various chemicals for surface modification, buffer solutions, bio-molecules/analytes, etc. The silicon nanowires are also presented as nano-temperature sensors in two configurations, i.e. as resistance temperature detector (RTD) and diode temperature detector (DTD) types. RTD type sensors have shown temperature coefficient of resistance (TCR) values ∼7500ppm/K which are enhanced beyond 10,000ppm/K by the application of back-bias. DTD type sensors using nanowires have recorded more than one order variation in reverse-bias current, in the temperature range of 293–373K. Both the types of nano-temperature sensors are highly sensitive and can be integrated with other bio-chemical sensors in lab-on-chip devices. Nanowire array fabrication details in particular as nano-temperature sensor are elaborated here along with their characterization. |
doi_str_mv | 10.1016/j.sna.2007.12.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33598239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424707008941</els_id><sourcerecordid>33598239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-37d2e099f84f49ad7ff97d98345e4486b38001c305b3c81c9638f954808803ec3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsP4G5W7ma8mZtpEgRBin9Q6aK6DmkmU1OmSU2mlu58B9_QJ3FKXbs6m_MdOB8hlxQKCnR0vSyS10UJwAtaFkDlERlQwTFHGMljMgBZspyVjJ-Ss5SWAIDI-YDczlzrTPCZ1z5sXbRZsj6FmOkY9S7bJOcXWRfWP1_fddj6bPwynWWdNe8-tGGxOycnjW6TvfjLIXl7uH8dP-WT6ePz-G6SG5Ssy5HXpQUpG8EaJnXNm0byWgpklWVMjOYoAKhBqOZoBDVyhKKRFRMgBKA1OCRXh911DB8bmzq1csnYttXehk1SiJUUJcq-SA9FE0NK0TZqHd1Kx52ioPam1FL1ptTelKKl6k31zM2Bsf2DT2ejSsZZb2zd-zCdqoP7h_4F8zlxAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33598239</pqid></control><display><type>article</type><title>Silicon nanowire sensor array using top–down CMOS technology</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Agarwal, Ajay ; Buddharaju, K. ; Lao, I.K. ; Singh, N. ; Balasubramanian, N. ; Kwong, D.L.</creator><creatorcontrib>Agarwal, Ajay ; Buddharaju, K. ; Lao, I.K. ; Singh, N. ; Balasubramanian, N. ; Kwong, D.L.</creatorcontrib><description>The paper elaborates the silicon nanowire (SiNW) arrays fabrication using standard CMOS compatible technologies (top–down) with each array consisting of 100 wires, which are individually electrically measurable for their conductance and facilitating statistical analysis. To facilitate real-time analysis, the arrays are integrated with micro-fluidics for the delivery of various chemicals for surface modification, buffer solutions, bio-molecules/analytes, etc. The silicon nanowires are also presented as nano-temperature sensors in two configurations, i.e. as resistance temperature detector (RTD) and diode temperature detector (DTD) types. RTD type sensors have shown temperature coefficient of resistance (TCR) values ∼7500ppm/K which are enhanced beyond 10,000ppm/K by the application of back-bias. DTD type sensors using nanowires have recorded more than one order variation in reverse-bias current, in the temperature range of 293–373K. Both the types of nano-temperature sensors are highly sensitive and can be integrated with other bio-chemical sensors in lab-on-chip devices. Nanowire array fabrication details in particular as nano-temperature sensor are elaborated here along with their characterization.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2007.12.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CMOS compatible ; Field effect transistors (FET) ; Nano-temperature sensor ; Silicon nanowires</subject><ispartof>Sensors and actuators. A. Physical., 2008-07, Vol.145-146, p.207-213</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-37d2e099f84f49ad7ff97d98345e4486b38001c305b3c81c9638f954808803ec3</citedby><cites>FETCH-LOGICAL-c394t-37d2e099f84f49ad7ff97d98345e4486b38001c305b3c81c9638f954808803ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2007.12.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Agarwal, Ajay</creatorcontrib><creatorcontrib>Buddharaju, K.</creatorcontrib><creatorcontrib>Lao, I.K.</creatorcontrib><creatorcontrib>Singh, N.</creatorcontrib><creatorcontrib>Balasubramanian, N.</creatorcontrib><creatorcontrib>Kwong, D.L.</creatorcontrib><title>Silicon nanowire sensor array using top–down CMOS technology</title><title>Sensors and actuators. A. Physical.</title><description>The paper elaborates the silicon nanowire (SiNW) arrays fabrication using standard CMOS compatible technologies (top–down) with each array consisting of 100 wires, which are individually electrically measurable for their conductance and facilitating statistical analysis. To facilitate real-time analysis, the arrays are integrated with micro-fluidics for the delivery of various chemicals for surface modification, buffer solutions, bio-molecules/analytes, etc. The silicon nanowires are also presented as nano-temperature sensors in two configurations, i.e. as resistance temperature detector (RTD) and diode temperature detector (DTD) types. RTD type sensors have shown temperature coefficient of resistance (TCR) values ∼7500ppm/K which are enhanced beyond 10,000ppm/K by the application of back-bias. DTD type sensors using nanowires have recorded more than one order variation in reverse-bias current, in the temperature range of 293–373K. Both the types of nano-temperature sensors are highly sensitive and can be integrated with other bio-chemical sensors in lab-on-chip devices. Nanowire array fabrication details in particular as nano-temperature sensor are elaborated here along with their characterization.</description><subject>CMOS compatible</subject><subject>Field effect transistors (FET)</subject><subject>Nano-temperature sensor</subject><subject>Silicon nanowires</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsP4G5W7ma8mZtpEgRBin9Q6aK6DmkmU1OmSU2mlu58B9_QJ3FKXbs6m_MdOB8hlxQKCnR0vSyS10UJwAtaFkDlERlQwTFHGMljMgBZspyVjJ-Ss5SWAIDI-YDczlzrTPCZ1z5sXbRZsj6FmOkY9S7bJOcXWRfWP1_fddj6bPwynWWdNe8-tGGxOycnjW6TvfjLIXl7uH8dP-WT6ePz-G6SG5Ssy5HXpQUpG8EaJnXNm0byWgpklWVMjOYoAKhBqOZoBDVyhKKRFRMgBKA1OCRXh911DB8bmzq1csnYttXehk1SiJUUJcq-SA9FE0NK0TZqHd1Kx52ioPam1FL1ptTelKKl6k31zM2Bsf2DT2ejSsZZb2zd-zCdqoP7h_4F8zlxAA</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Agarwal, Ajay</creator><creator>Buddharaju, K.</creator><creator>Lao, I.K.</creator><creator>Singh, N.</creator><creator>Balasubramanian, N.</creator><creator>Kwong, D.L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>200807</creationdate><title>Silicon nanowire sensor array using top–down CMOS technology</title><author>Agarwal, Ajay ; Buddharaju, K. ; Lao, I.K. ; Singh, N. ; Balasubramanian, N. ; Kwong, D.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-37d2e099f84f49ad7ff97d98345e4486b38001c305b3c81c9638f954808803ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CMOS compatible</topic><topic>Field effect transistors (FET)</topic><topic>Nano-temperature sensor</topic><topic>Silicon nanowires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Ajay</creatorcontrib><creatorcontrib>Buddharaju, K.</creatorcontrib><creatorcontrib>Lao, I.K.</creatorcontrib><creatorcontrib>Singh, N.</creatorcontrib><creatorcontrib>Balasubramanian, N.</creatorcontrib><creatorcontrib>Kwong, D.L.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Ajay</au><au>Buddharaju, K.</au><au>Lao, I.K.</au><au>Singh, N.</au><au>Balasubramanian, N.</au><au>Kwong, D.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon nanowire sensor array using top–down CMOS technology</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2008-07</date><risdate>2008</risdate><volume>145-146</volume><spage>207</spage><epage>213</epage><pages>207-213</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>The paper elaborates the silicon nanowire (SiNW) arrays fabrication using standard CMOS compatible technologies (top–down) with each array consisting of 100 wires, which are individually electrically measurable for their conductance and facilitating statistical analysis. To facilitate real-time analysis, the arrays are integrated with micro-fluidics for the delivery of various chemicals for surface modification, buffer solutions, bio-molecules/analytes, etc. The silicon nanowires are also presented as nano-temperature sensors in two configurations, i.e. as resistance temperature detector (RTD) and diode temperature detector (DTD) types. RTD type sensors have shown temperature coefficient of resistance (TCR) values ∼7500ppm/K which are enhanced beyond 10,000ppm/K by the application of back-bias. DTD type sensors using nanowires have recorded more than one order variation in reverse-bias current, in the temperature range of 293–373K. Both the types of nano-temperature sensors are highly sensitive and can be integrated with other bio-chemical sensors in lab-on-chip devices. Nanowire array fabrication details in particular as nano-temperature sensor are elaborated here along with their characterization.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2007.12.019</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2008-07, Vol.145-146, p.207-213 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_miscellaneous_33598239 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | CMOS compatible Field effect transistors (FET) Nano-temperature sensor Silicon nanowires |
title | Silicon nanowire sensor array using top–down CMOS technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20nanowire%20sensor%20array%20using%20top%E2%80%93down%20CMOS%20technology&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Agarwal,%20Ajay&rft.date=2008-07&rft.volume=145-146&rft.spage=207&rft.epage=213&rft.pages=207-213&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2007.12.019&rft_dat=%3Cproquest_cross%3E33598239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33598239&rft_id=info:pmid/&rft_els_id=S0924424707008941&rfr_iscdi=true |