A simple way to introduce fibers into FEM models
This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber‐reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain...
Gespeichert in:
Veröffentlicht in: | Communications in numerical methods in engineering 2008-07, Vol.24 (7), p.585-603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 7 |
container_start_page | 585 |
container_title | Communications in numerical methods in engineering |
container_volume | 24 |
creator | Vanalli, L. Paccola, R. R. Coda, H. B. |
description | This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber‐reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre‐existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non‐reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding ‘rebar’ elements, node‐by‐node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non‐linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non‐linear analysis, to validate and show the capabilities of the formulation. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cnm.983 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33594969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33594969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3603-10d85e02ff30edb11b32120c5618a7b213ded2a9a11394ee6e5f9c1913215f4b3</originalsourceid><addsrcrecordid>eNp10DtPwzAUhuEIgUQpiL-QBRhQyrHdOPFYegOpLQzcNstxjiVDLsVOVfrvSRXUjclH1qN3-ILgksCAANA7XZUDkbKjoEdAiAjSNDne31xEKRXiNDjz_hMABKTQC2AUeluuCwy3ahc2dWirxtX5RmNobIbO7z_qcDZdhmWdY-HPgxOjCo8Xf28_eJ1NX8YP0eJp_jgeLSLNOLCIQJ7GCNQYBphnhGSMEgo65iRVSUYJyzGnSihCmBgicoyN0ESQlsVmmLF-cN11167-3qBvZGm9xqJQFdYbLxmLxVBw0cKbDmpXe-_QyLWzpXI7SUDuF5HtIrJdpJVXf0nltSqMU5W2_sApxITzOGndbee2tsDdfzk5Xi27atRp6xv8OWjlviRPWBLL99VcTp7vZ5N08SHf2C9lbntc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33594969</pqid></control><display><type>article</type><title>A simple way to introduce fibers into FEM models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vanalli, L. ; Paccola, R. R. ; Coda, H. B.</creator><creatorcontrib>Vanalli, L. ; Paccola, R. R. ; Coda, H. B.</creatorcontrib><description>This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber‐reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre‐existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non‐reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding ‘rebar’ elements, node‐by‐node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non‐linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non‐linear analysis, to validate and show the capabilities of the formulation. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1069-8299</identifier><identifier>EISSN: 1099-0887</identifier><identifier>DOI: 10.1002/cnm.983</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Computational techniques ; Exact sciences and technology ; FEM ; fibers ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Physics ; random ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Communications in numerical methods in engineering, 2008-07, Vol.24 (7), p.585-603</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3603-10d85e02ff30edb11b32120c5618a7b213ded2a9a11394ee6e5f9c1913215f4b3</citedby><cites>FETCH-LOGICAL-c3603-10d85e02ff30edb11b32120c5618a7b213ded2a9a11394ee6e5f9c1913215f4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.983$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.983$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20516657$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanalli, L.</creatorcontrib><creatorcontrib>Paccola, R. R.</creatorcontrib><creatorcontrib>Coda, H. B.</creatorcontrib><title>A simple way to introduce fibers into FEM models</title><title>Communications in numerical methods in engineering</title><addtitle>Commun. Numer. Meth. Engng</addtitle><description>This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber‐reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre‐existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non‐reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding ‘rebar’ elements, node‐by‐node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non‐linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non‐linear analysis, to validate and show the capabilities of the formulation. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>fibers</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>random</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>1069-8299</issn><issn>1099-0887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUhuEIgUQpiL-QBRhQyrHdOPFYegOpLQzcNstxjiVDLsVOVfrvSRXUjclH1qN3-ILgksCAANA7XZUDkbKjoEdAiAjSNDne31xEKRXiNDjz_hMABKTQC2AUeluuCwy3ahc2dWirxtX5RmNobIbO7z_qcDZdhmWdY-HPgxOjCo8Xf28_eJ1NX8YP0eJp_jgeLSLNOLCIQJ7GCNQYBphnhGSMEgo65iRVSUYJyzGnSihCmBgicoyN0ESQlsVmmLF-cN11167-3qBvZGm9xqJQFdYbLxmLxVBw0cKbDmpXe-_QyLWzpXI7SUDuF5HtIrJdpJVXf0nltSqMU5W2_sApxITzOGndbee2tsDdfzk5Xi27atRp6xv8OWjlviRPWBLL99VcTp7vZ5N08SHf2C9lbntc</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Vanalli, L.</creator><creator>Paccola, R. R.</creator><creator>Coda, H. B.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200807</creationdate><title>A simple way to introduce fibers into FEM models</title><author>Vanalli, L. ; Paccola, R. R. ; Coda, H. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3603-10d85e02ff30edb11b32120c5618a7b213ded2a9a11394ee6e5f9c1913215f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>fibers</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>random</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Vanalli, L.</creatorcontrib><creatorcontrib>Paccola, R. R.</creatorcontrib><creatorcontrib>Coda, H. B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanalli, L.</au><au>Paccola, R. R.</au><au>Coda, H. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple way to introduce fibers into FEM models</atitle><jtitle>Communications in numerical methods in engineering</jtitle><addtitle>Commun. Numer. Meth. Engng</addtitle><date>2008-07</date><risdate>2008</risdate><volume>24</volume><issue>7</issue><spage>585</spage><epage>603</epage><pages>585-603</pages><issn>1069-8299</issn><eissn>1099-0887</eissn><abstract>This communication proposes a simple way to introduce fibers into finite element modelling. This is a promising formulation to deal with fiber‐reinforced composites by the finite element method (FEM), as it allows the consideration of short or long fibers placed arbitrarily inside a continuum domain (matrix). The most important feature of the formulation is that no additional degree of freedom is introduced into the pre‐existent finite element numerical system to consider any distribution of fiber inclusions. In other words, the size of the system of equations used to solve a non‐reinforced medium is the same as the one used to solve the reinforced counterpart. Another important characteristic is the reduced work required by the user to introduce fibers, avoiding ‘rebar’ elements, node‐by‐node geometrical definitions or even complex mesh generation. An additional characteristic of the technique is the possibility of representing unbounded stresses at the end of fibers using a finite number of degrees of freedom. Further studies are required for non‐linear applications in which localization may occur. Along the text the linear formulation is presented and the bounded connection between fibers and continuum is considered. Four examples are presented, including non‐linear analysis, to validate and show the capabilities of the formulation. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cnm.983</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-8299 |
ispartof | Communications in numerical methods in engineering, 2008-07, Vol.24 (7), p.585-603 |
issn | 1069-8299 1099-0887 |
language | eng |
recordid | cdi_proquest_miscellaneous_33594969 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computational techniques Exact sciences and technology FEM fibers Fundamental areas of phenomenology (including applications) Mathematical methods in physics Physics random Solid mechanics Structural and continuum mechanics |
title | A simple way to introduce fibers into FEM models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20way%20to%20introduce%20fibers%20into%20FEM%20models&rft.jtitle=Communications%20in%20numerical%20methods%20in%20engineering&rft.au=Vanalli,%20L.&rft.date=2008-07&rft.volume=24&rft.issue=7&rft.spage=585&rft.epage=603&rft.pages=585-603&rft.issn=1069-8299&rft.eissn=1099-0887&rft_id=info:doi/10.1002/cnm.983&rft_dat=%3Cproquest_cross%3E33594969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33594969&rft_id=info:pmid/&rfr_iscdi=true |