Optimal Adaptive Policies for Sequential Allocation Problems

Consider the problem of sequential sampling frommstatistical populations to maximize the expected sum of outcomes in the long run. Under suitable assumptions on the unknown parameters[formula], it is shown that there exists a classCRof adaptive policies with the following properties: (i) The expecte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 1996-06, Vol.17 (2), p.122-142
Hauptverfasser: Burnetas, Apostolos N., Katehakis, Michael N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 2
container_start_page 122
container_title Advances in applied mathematics
container_volume 17
creator Burnetas, Apostolos N.
Katehakis, Michael N.
description Consider the problem of sequential sampling frommstatistical populations to maximize the expected sum of outcomes in the long run. Under suitable assumptions on the unknown parameters[formula], it is shown that there exists a classCRof adaptive policies with the following properties: (i) The expectednhorizon reward[formula]under any policy π0inCRis equal to[formula], asn→∞, where[formula]is the largest population mean and[formula]is a constant. (ii) Policies inCRare asymptotically optimal within a larger classCUFof “uniformly fast convergent” policies in the sense that[formula], for any π∈CUFand any[formula]such that[formula]. Policies inCRare specified via easily computable indices, defined as unique solutions to dual problems that arise naturally from the functional form of[formula]. In addition, the assumptions are verified for populations specified by nonparametric discrete univariate distributions with finite support. In the case of normal populations with unknown means and variances, we leave as an open problem the verification of one assumption.
doi_str_mv 10.1006/aama.1996.0007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33585596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S019688589690007X</els_id><sourcerecordid>33585596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-4f19cba8c161b7d7c4de9840d1eccb5de3698d65c1706e4f7695badeefd448da3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoOKdXzz2It9ZkadIEvIzhFww2UM8hTd5CJG1m0g38703Z8ObpfQ_P7_14ELoluCIY8wete10RKXmFMW7O0IxgicsFbupzNMNE8lIIJi7RVUpfmZALTmfocbMbXa99sbQ6dwcotsE74yAVXYjFO3zvYRjdBHgfjB5dGIptDK2HPl2ji077BDenOkefz08fq9dyvXl5Wy3XpaGCj2XdEWlaLQzhpG1sY2oLUtTYEjCmZRYol8JyZkiDOdRdwyVrtQXobF0Lq-kc3R_n7mLI96RR9S4Z8F4PEPZJUcoEY5JnsDqCJoaUInRqF_N38UcRrCZJapKkJklqkpQDd6fJOhntu6gH49JfipKF5IxkTBwxyF8eHESVsqLBgHURzKhscP9t-AWDSXtF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33585596</pqid></control><display><type>article</type><title>Optimal Adaptive Policies for Sequential Allocation Problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Burnetas, Apostolos N. ; Katehakis, Michael N.</creator><creatorcontrib>Burnetas, Apostolos N. ; Katehakis, Michael N.</creatorcontrib><description>Consider the problem of sequential sampling frommstatistical populations to maximize the expected sum of outcomes in the long run. Under suitable assumptions on the unknown parameters[formula], it is shown that there exists a classCRof adaptive policies with the following properties: (i) The expectednhorizon reward[formula]under any policy π0inCRis equal to[formula], asn→∞, where[formula]is the largest population mean and[formula]is a constant. (ii) Policies inCRare asymptotically optimal within a larger classCUFof “uniformly fast convergent” policies in the sense that[formula], for any π∈CUFand any[formula]such that[formula]. Policies inCRare specified via easily computable indices, defined as unique solutions to dual problems that arise naturally from the functional form of[formula]. In addition, the assumptions are verified for populations specified by nonparametric discrete univariate distributions with finite support. In the case of normal populations with unknown means and variances, we leave as an open problem the verification of one assumption.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.1996.0007</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Exact sciences and technology ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Sequential methods ; Statistics</subject><ispartof>Advances in applied mathematics, 1996-06, Vol.17 (2), p.122-142</ispartof><rights>1996 Academic Press</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-4f19cba8c161b7d7c4de9840d1eccb5de3698d65c1706e4f7695badeefd448da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/aama.1996.0007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3129651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burnetas, Apostolos N.</creatorcontrib><creatorcontrib>Katehakis, Michael N.</creatorcontrib><title>Optimal Adaptive Policies for Sequential Allocation Problems</title><title>Advances in applied mathematics</title><description>Consider the problem of sequential sampling frommstatistical populations to maximize the expected sum of outcomes in the long run. Under suitable assumptions on the unknown parameters[formula], it is shown that there exists a classCRof adaptive policies with the following properties: (i) The expectednhorizon reward[formula]under any policy π0inCRis equal to[formula], asn→∞, where[formula]is the largest population mean and[formula]is a constant. (ii) Policies inCRare asymptotically optimal within a larger classCUFof “uniformly fast convergent” policies in the sense that[formula], for any π∈CUFand any[formula]such that[formula]. Policies inCRare specified via easily computable indices, defined as unique solutions to dual problems that arise naturally from the functional form of[formula]. In addition, the assumptions are verified for populations specified by nonparametric discrete univariate distributions with finite support. In the case of normal populations with unknown means and variances, we leave as an open problem the verification of one assumption.</description><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Sequential methods</subject><subject>Statistics</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYh4MoOKdXzz2It9ZkadIEvIzhFww2UM8hTd5CJG1m0g38703Z8ObpfQ_P7_14ELoluCIY8wete10RKXmFMW7O0IxgicsFbupzNMNE8lIIJi7RVUpfmZALTmfocbMbXa99sbQ6dwcotsE74yAVXYjFO3zvYRjdBHgfjB5dGIptDK2HPl2ji077BDenOkefz08fq9dyvXl5Wy3XpaGCj2XdEWlaLQzhpG1sY2oLUtTYEjCmZRYol8JyZkiDOdRdwyVrtQXobF0Lq-kc3R_n7mLI96RR9S4Z8F4PEPZJUcoEY5JnsDqCJoaUInRqF_N38UcRrCZJapKkJklqkpQDd6fJOhntu6gH49JfipKF5IxkTBwxyF8eHESVsqLBgHURzKhscP9t-AWDSXtF</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Burnetas, Apostolos N.</creator><creator>Katehakis, Michael N.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960601</creationdate><title>Optimal Adaptive Policies for Sequential Allocation Problems</title><author>Burnetas, Apostolos N. ; Katehakis, Michael N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-4f19cba8c161b7d7c4de9840d1eccb5de3698d65c1706e4f7695badeefd448da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Sequential methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burnetas, Apostolos N.</creatorcontrib><creatorcontrib>Katehakis, Michael N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnetas, Apostolos N.</au><au>Katehakis, Michael N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Adaptive Policies for Sequential Allocation Problems</atitle><jtitle>Advances in applied mathematics</jtitle><date>1996-06-01</date><risdate>1996</risdate><volume>17</volume><issue>2</issue><spage>122</spage><epage>142</epage><pages>122-142</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>Consider the problem of sequential sampling frommstatistical populations to maximize the expected sum of outcomes in the long run. Under suitable assumptions on the unknown parameters[formula], it is shown that there exists a classCRof adaptive policies with the following properties: (i) The expectednhorizon reward[formula]under any policy π0inCRis equal to[formula], asn→∞, where[formula]is the largest population mean and[formula]is a constant. (ii) Policies inCRare asymptotically optimal within a larger classCUFof “uniformly fast convergent” policies in the sense that[formula], for any π∈CUFand any[formula]such that[formula]. Policies inCRare specified via easily computable indices, defined as unique solutions to dual problems that arise naturally from the functional form of[formula]. In addition, the assumptions are verified for populations specified by nonparametric discrete univariate distributions with finite support. In the case of normal populations with unknown means and variances, we leave as an open problem the verification of one assumption.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/aama.1996.0007</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Advances in applied mathematics, 1996-06, Vol.17 (2), p.122-142
issn 0196-8858
1090-2074
language eng
recordid cdi_proquest_miscellaneous_33585596
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Exact sciences and technology
Mathematics
Probability and statistics
Sciences and techniques of general use
Sequential methods
Statistics
title Optimal Adaptive Policies for Sequential Allocation Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Adaptive%20Policies%20for%20Sequential%20Allocation%20Problems&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Burnetas,%20Apostolos%20N.&rft.date=1996-06-01&rft.volume=17&rft.issue=2&rft.spage=122&rft.epage=142&rft.pages=122-142&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1006/aama.1996.0007&rft_dat=%3Cproquest_cross%3E33585596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33585596&rft_id=info:pmid/&rft_els_id=S019688589690007X&rfr_iscdi=true