Regular Article: Computing the Laurent Series of the Map Psi: C - - > C - M
We discuss several interesting properties of the Laurent series of Psi : C - - > C - M, the inverse of the uniformizing map of the Mandelbrot set M = {c C : c, c2 + c,(c2 + c)2 + c, . . . , {infinity} as n - > {infinity}}. Continuity of the Laurent series on {partial differential}D implies loc...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 1993-03, Vol.14 (1), p.25-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Advances in applied mathematics |
container_volume | 14 |
creator | Bielefeld, B Fisher, Y Vonhaeseler, F |
description | We discuss several interesting properties of the Laurent series of Psi : C - - > C - M, the inverse of the uniformizing map of the Mandelbrot set M = {c C : c, c2 + c,(c2 + c)2 + c, . . . , {infinity} as n - > {infinity}}. Continuity of the Laurent series on {partial differential}D implies local connectivity of M, which is an open question. We show how the coefficients of the series can he easily computed by following Hubbard and Douady's construction of the uniformizing map for M. As a result, we show that the coefficients are rational with powers of 2 in their denominator and that many are zero. Furthermore, if the series is continuous on {partial differential}D, we show that it is not Holder continuous. We also include several empirical observations made by Don Zagier on the growth of the power of 2 in the denominator. |
doi_str_mv | 10.1006/aama.1993.1002 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_33584714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33584714</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_335847143</originalsourceid><addsrcrecordid>eNqNiskKwjAURYMoWIet66zcVV-a2jYuBBFF0IKoewnyrJF0MMP_O-AHyF0c7uEQMmIwYQDJVMpSTpgQ_HOjFgkYCAgjSOM2CYCJJMyyWdYlPWsfACCihAdkd8TCa2no0jh11Tinq7psvFNVQd0d6V56g5WjJzQKLa1vX5vLhh6sesc0fG_xZT4gnZvUFoc_9sl4sz6vtmFj6qdH6y6lslfUWlZYe3vhfJbFKYv53-ELoMRDDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33584714</pqid></control><display><type>article</type><title>Regular Article: Computing the Laurent Series of the Map Psi: C - - > C - M</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bielefeld, B ; Fisher, Y ; Vonhaeseler, F</creator><creatorcontrib>Bielefeld, B ; Fisher, Y ; Vonhaeseler, F</creatorcontrib><description>We discuss several interesting properties of the Laurent series of Psi : C - - > C - M, the inverse of the uniformizing map of the Mandelbrot set M = {c C : c, c2 + c,(c2 + c)2 + c, . . . , {infinity} as n - > {infinity}}. Continuity of the Laurent series on {partial differential}D implies local connectivity of M, which is an open question. We show how the coefficients of the series can he easily computed by following Hubbard and Douady's construction of the uniformizing map for M. As a result, we show that the coefficients are rational with powers of 2 in their denominator and that many are zero. Furthermore, if the series is continuous on {partial differential}D, we show that it is not Holder continuous. We also include several empirical observations made by Don Zagier on the growth of the power of 2 in the denominator.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1006/aama.1993.1002</identifier><language>eng</language><ispartof>Advances in applied mathematics, 1993-03, Vol.14 (1), p.25-38</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bielefeld, B</creatorcontrib><creatorcontrib>Fisher, Y</creatorcontrib><creatorcontrib>Vonhaeseler, F</creatorcontrib><title>Regular Article: Computing the Laurent Series of the Map Psi: C - - > C - M</title><title>Advances in applied mathematics</title><description>We discuss several interesting properties of the Laurent series of Psi : C - - > C - M, the inverse of the uniformizing map of the Mandelbrot set M = {c C : c, c2 + c,(c2 + c)2 + c, . . . , {infinity} as n - > {infinity}}. Continuity of the Laurent series on {partial differential}D implies local connectivity of M, which is an open question. We show how the coefficients of the series can he easily computed by following Hubbard and Douady's construction of the uniformizing map for M. As a result, we show that the coefficients are rational with powers of 2 in their denominator and that many are zero. Furthermore, if the series is continuous on {partial differential}D, we show that it is not Holder continuous. We also include several empirical observations made by Don Zagier on the growth of the power of 2 in the denominator.</description><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNiskKwjAURYMoWIet66zcVV-a2jYuBBFF0IKoewnyrJF0MMP_O-AHyF0c7uEQMmIwYQDJVMpSTpgQ_HOjFgkYCAgjSOM2CYCJJMyyWdYlPWsfACCihAdkd8TCa2no0jh11Tinq7psvFNVQd0d6V56g5WjJzQKLa1vX5vLhh6sesc0fG_xZT4gnZvUFoc_9sl4sz6vtmFj6qdH6y6lslfUWlZYe3vhfJbFKYv53-ELoMRDDw</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Bielefeld, B</creator><creator>Fisher, Y</creator><creator>Vonhaeseler, F</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930301</creationdate><title>Regular Article: Computing the Laurent Series of the Map Psi: C - - > C - M</title><author>Bielefeld, B ; Fisher, Y ; Vonhaeseler, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_335847143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bielefeld, B</creatorcontrib><creatorcontrib>Fisher, Y</creatorcontrib><creatorcontrib>Vonhaeseler, F</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bielefeld, B</au><au>Fisher, Y</au><au>Vonhaeseler, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular Article: Computing the Laurent Series of the Map Psi: C - - > C - M</atitle><jtitle>Advances in applied mathematics</jtitle><date>1993-03-01</date><risdate>1993</risdate><volume>14</volume><issue>1</issue><spage>25</spage><epage>38</epage><pages>25-38</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><abstract>We discuss several interesting properties of the Laurent series of Psi : C - - > C - M, the inverse of the uniformizing map of the Mandelbrot set M = {c C : c, c2 + c,(c2 + c)2 + c, . . . , {infinity} as n - > {infinity}}. Continuity of the Laurent series on {partial differential}D implies local connectivity of M, which is an open question. We show how the coefficients of the series can he easily computed by following Hubbard and Douady's construction of the uniformizing map for M. As a result, we show that the coefficients are rational with powers of 2 in their denominator and that many are zero. Furthermore, if the series is continuous on {partial differential}D, we show that it is not Holder continuous. We also include several empirical observations made by Don Zagier on the growth of the power of 2 in the denominator.</abstract><doi>10.1006/aama.1993.1002</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8858 |
ispartof | Advances in applied mathematics, 1993-03, Vol.14 (1), p.25-38 |
issn | 0196-8858 1090-2074 |
language | eng |
recordid | cdi_proquest_miscellaneous_33584714 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
title | Regular Article: Computing the Laurent Series of the Map Psi: C - - > C - M |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20Article:%20Computing%20the%20Laurent%20Series%20of%20the%20Map%20Psi:%20C%20-%20-%20%3E%20C%20-%20M&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Bielefeld,%20B&rft.date=1993-03-01&rft.volume=14&rft.issue=1&rft.spage=25&rft.epage=38&rft.pages=25-38&rft.issn=0196-8858&rft.eissn=1090-2074&rft_id=info:doi/10.1006/aama.1993.1002&rft_dat=%3Cproquest%3E33584714%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33584714&rft_id=info:pmid/&rfr_iscdi=true |