On the properties of a new classification of partitions into at most three parts

Let n be a positive integer, and let n = x + y + z, x greater than or equal to y greater than or equal to z greater than or equal to 0 be a partition of n into at most three positive parts; throughout the present paper the phase ''partition on n'' will tacitly embody this restric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adv. Appl. Math.; (United States) 1980, Vol.1 (2), p.221-236
Hauptverfasser: Stein, P.R, Everett, C.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue 2
container_start_page 221
container_title Adv. Appl. Math.; (United States)
container_volume 1
creator Stein, P.R
Everett, C.J
description Let n be a positive integer, and let n = x + y + z, x greater than or equal to y greater than or equal to z greater than or equal to 0 be a partition of n into at most three positive parts; throughout the present paper the phase ''partition on n'' will tacitly embody this restriction. The number of such partitions is well known to be p(n, 3) = )(n + 2) (n + 4)/12), where the curly brackets in this formula (but not elsewhere in the paper) indicate nearest integer. Further, let m = x/sup 2/ + y/sup 2/ + z/sup 2/. Fixing n, we run through all p(n, 3) partitions of n, grouping together those which have the same m value. In other words, we impose a structure on the set of partitions by defining equivalence classes C/sub m/ labeled by the value of the sum of squares of the parts. Any given class will consist of some k-tuple of partitions, k = 1, 2,... Let ..mu../sub i/ be the number of distinct i-tuples for given n, so that ..sigma.. r/sub i=2/ i..mu../sub i/ = p(n, 3); here r = r(n) is the maximum number of partitions in any of the classes C/sub m/; we shall call r(n) the rank of the integer n. In the sequel we investigate the properties of this new structure as n increases without limit. A complete characterization of the classification is given in terms of a suitably restricted set of solutions of a well-known binary diophantine equation.
doi_str_mv 10.1016/0196-8858(80)90011-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_33578809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0196885880900111</els_id><sourcerecordid>33578809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3251-a04df68fa0b71f5a0a1df2cb9b81fd443caff70b9214c20a2bf9f7f70c65bf563</originalsourceid><addsrcrecordid>eNp9kE1LBDEMhosouK7-Aw_Fg-hhNJ3PzkWQxS9YWA96Lp1OylZ227Gtiv_ezo549BSSPHmTvIScMrhiwOprYG2dcV7xCw6XLQBjGdsjMwYtZDk05T6Z_SGH5CiENwBo87qYkeeVpXGNdPBuQB8NBuo0ldTiF1UbGYLRRslonB3rg0zImARqbHRURrp1ISYFj7jrhmNyoOUm4MlvnJPX-7uXxWO2XD08LW6XmSryimUSyl7XXEvoGqYrCZL1Oldd23Gm-7IslNS6ga7NWalykHmnW92kiqqrTld1MSdnk27ab0RQJqJaK2ctqijqBsoSeILOJyi99_6BIYqtCQo3G2nRfQRRFFXDObQJLCdQeReCRy0Gb7bSfwsGYvRYjAaK0UDBQew8FiyN3UxjmD79NOjHQ9Aq7I0f7-id-V_gB_lEg20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33578809</pqid></control><display><type>article</type><title>On the properties of a new classification of partitions into at most three parts</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stein, P.R ; Everett, C.J</creator><creatorcontrib>Stein, P.R ; Everett, C.J ; Los Alamos Scientific Lab., NM</creatorcontrib><description>Let n be a positive integer, and let n = x + y + z, x greater than or equal to y greater than or equal to z greater than or equal to 0 be a partition of n into at most three positive parts; throughout the present paper the phase ''partition on n'' will tacitly embody this restriction. The number of such partitions is well known to be p(n, 3) = )(n + 2) (n + 4)/12), where the curly brackets in this formula (but not elsewhere in the paper) indicate nearest integer. Further, let m = x/sup 2/ + y/sup 2/ + z/sup 2/. Fixing n, we run through all p(n, 3) partitions of n, grouping together those which have the same m value. In other words, we impose a structure on the set of partitions by defining equivalence classes C/sub m/ labeled by the value of the sum of squares of the parts. Any given class will consist of some k-tuple of partitions, k = 1, 2,... Let ..mu../sub i/ be the number of distinct i-tuples for given n, so that ..sigma.. r/sub i=2/ i..mu../sub i/ = p(n, 3); here r = r(n) is the maximum number of partitions in any of the classes C/sub m/; we shall call r(n) the rank of the integer n. In the sequel we investigate the properties of this new structure as n increases without limit. A complete characterization of the classification is given in terms of a suitably restricted set of solutions of a well-known binary diophantine equation.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1016/0196-8858(80)90011-1</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CLASSIFICATION ; DATA ; FUNCTIONS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; INFORMATION ; MATHEMATICAL LOGIC ; NUMERICAL DATA 990200 -- Mathematics &amp; Computers ; NUMERICAL SOLUTION ; PARTITION FUNCTIONS ; THEORETICAL DATA</subject><ispartof>Adv. Appl. Math.; (United States), 1980, Vol.1 (2), p.221-236</ispartof><rights>1980</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3251-a04df68fa0b71f5a0a1df2cb9b81fd443caff70b9214c20a2bf9f7f70c65bf563</citedby><cites>FETCH-LOGICAL-c3251-a04df68fa0b71f5a0a1df2cb9b81fd443caff70b9214c20a2bf9f7f70c65bf563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6704408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, P.R</creatorcontrib><creatorcontrib>Everett, C.J</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., NM</creatorcontrib><title>On the properties of a new classification of partitions into at most three parts</title><title>Adv. Appl. Math.; (United States)</title><description>Let n be a positive integer, and let n = x + y + z, x greater than or equal to y greater than or equal to z greater than or equal to 0 be a partition of n into at most three positive parts; throughout the present paper the phase ''partition on n'' will tacitly embody this restriction. The number of such partitions is well known to be p(n, 3) = )(n + 2) (n + 4)/12), where the curly brackets in this formula (but not elsewhere in the paper) indicate nearest integer. Further, let m = x/sup 2/ + y/sup 2/ + z/sup 2/. Fixing n, we run through all p(n, 3) partitions of n, grouping together those which have the same m value. In other words, we impose a structure on the set of partitions by defining equivalence classes C/sub m/ labeled by the value of the sum of squares of the parts. Any given class will consist of some k-tuple of partitions, k = 1, 2,... Let ..mu../sub i/ be the number of distinct i-tuples for given n, so that ..sigma.. r/sub i=2/ i..mu../sub i/ = p(n, 3); here r = r(n) is the maximum number of partitions in any of the classes C/sub m/; we shall call r(n) the rank of the integer n. In the sequel we investigate the properties of this new structure as n increases without limit. A complete characterization of the classification is given in terms of a suitably restricted set of solutions of a well-known binary diophantine equation.</description><subject>CLASSIFICATION</subject><subject>DATA</subject><subject>FUNCTIONS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>INFORMATION</subject><subject>MATHEMATICAL LOGIC</subject><subject>NUMERICAL DATA 990200 -- Mathematics &amp; Computers</subject><subject>NUMERICAL SOLUTION</subject><subject>PARTITION FUNCTIONS</subject><subject>THEORETICAL DATA</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LBDEMhosouK7-Aw_Fg-hhNJ3PzkWQxS9YWA96Lp1OylZ227Gtiv_ezo549BSSPHmTvIScMrhiwOprYG2dcV7xCw6XLQBjGdsjMwYtZDk05T6Z_SGH5CiENwBo87qYkeeVpXGNdPBuQB8NBuo0ldTiF1UbGYLRRslonB3rg0zImARqbHRURrp1ISYFj7jrhmNyoOUm4MlvnJPX-7uXxWO2XD08LW6XmSryimUSyl7XXEvoGqYrCZL1Oldd23Gm-7IslNS6ga7NWalykHmnW92kiqqrTld1MSdnk27ab0RQJqJaK2ctqijqBsoSeILOJyi99_6BIYqtCQo3G2nRfQRRFFXDObQJLCdQeReCRy0Gb7bSfwsGYvRYjAaK0UDBQew8FiyN3UxjmD79NOjHQ9Aq7I0f7-id-V_gB_lEg20</recordid><startdate>1980</startdate><enddate>1980</enddate><creator>Stein, P.R</creator><creator>Everett, C.J</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>1980</creationdate><title>On the properties of a new classification of partitions into at most three parts</title><author>Stein, P.R ; Everett, C.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3251-a04df68fa0b71f5a0a1df2cb9b81fd443caff70b9214c20a2bf9f7f70c65bf563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>CLASSIFICATION</topic><topic>DATA</topic><topic>FUNCTIONS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>INFORMATION</topic><topic>MATHEMATICAL LOGIC</topic><topic>NUMERICAL DATA 990200 -- Mathematics &amp; Computers</topic><topic>NUMERICAL SOLUTION</topic><topic>PARTITION FUNCTIONS</topic><topic>THEORETICAL DATA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, P.R</creatorcontrib><creatorcontrib>Everett, C.J</creatorcontrib><creatorcontrib>Los Alamos Scientific Lab., NM</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Adv. Appl. Math.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, P.R</au><au>Everett, C.J</au><aucorp>Los Alamos Scientific Lab., NM</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the properties of a new classification of partitions into at most three parts</atitle><jtitle>Adv. Appl. Math.; (United States)</jtitle><date>1980</date><risdate>1980</risdate><volume>1</volume><issue>2</issue><spage>221</spage><epage>236</epage><pages>221-236</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><abstract>Let n be a positive integer, and let n = x + y + z, x greater than or equal to y greater than or equal to z greater than or equal to 0 be a partition of n into at most three positive parts; throughout the present paper the phase ''partition on n'' will tacitly embody this restriction. The number of such partitions is well known to be p(n, 3) = )(n + 2) (n + 4)/12), where the curly brackets in this formula (but not elsewhere in the paper) indicate nearest integer. Further, let m = x/sup 2/ + y/sup 2/ + z/sup 2/. Fixing n, we run through all p(n, 3) partitions of n, grouping together those which have the same m value. In other words, we impose a structure on the set of partitions by defining equivalence classes C/sub m/ labeled by the value of the sum of squares of the parts. Any given class will consist of some k-tuple of partitions, k = 1, 2,... Let ..mu../sub i/ be the number of distinct i-tuples for given n, so that ..sigma.. r/sub i=2/ i..mu../sub i/ = p(n, 3); here r = r(n) is the maximum number of partitions in any of the classes C/sub m/; we shall call r(n) the rank of the integer n. In the sequel we investigate the properties of this new structure as n increases without limit. A complete characterization of the classification is given in terms of a suitably restricted set of solutions of a well-known binary diophantine equation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/0196-8858(80)90011-1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Adv. Appl. Math.; (United States), 1980, Vol.1 (2), p.221-236
issn 0196-8858
1090-2074
language eng
recordid cdi_proquest_miscellaneous_33578809
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects CLASSIFICATION
DATA
FUNCTIONS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
INFORMATION
MATHEMATICAL LOGIC
NUMERICAL DATA 990200 -- Mathematics & Computers
NUMERICAL SOLUTION
PARTITION FUNCTIONS
THEORETICAL DATA
title On the properties of a new classification of partitions into at most three parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20properties%20of%20a%20new%20classification%20of%20partitions%20into%20at%20most%20three%20parts&rft.jtitle=Adv.%20Appl.%20Math.;%20(United%20States)&rft.au=Stein,%20P.R&rft.aucorp=Los%20Alamos%20Scientific%20Lab.,%20NM&rft.date=1980&rft.volume=1&rft.issue=2&rft.spage=221&rft.epage=236&rft.pages=221-236&rft.issn=0196-8858&rft.eissn=1090-2074&rft_id=info:doi/10.1016/0196-8858(80)90011-1&rft_dat=%3Cproquest_osti_%3E33578809%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33578809&rft_id=info:pmid/&rft_els_id=0196885880900111&rfr_iscdi=true