Rim hook tableaux and Kostant's η-function coefficients

Using a 0/1 encoding of Young diagrams and its consequences for rim hook tableaux, we prove a reduction formula of Littlewood for arbitrary characters of the symmetric group, evaluated at elements with all cycle lengths divisible by a given integer. As an application, we find explicitly the coeffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2004-10, Vol.33 (3), p.492-511
Hauptverfasser: Adin, Ron M., Frumkin, Avital
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 3
container_start_page 492
container_title Advances in applied mathematics
container_volume 33
creator Adin, Ron M.
Frumkin, Avital
description Using a 0/1 encoding of Young diagrams and its consequences for rim hook tableaux, we prove a reduction formula of Littlewood for arbitrary characters of the symmetric group, evaluated at elements with all cycle lengths divisible by a given integer. As an application, we find explicitly the coefficients in a formula of Kostant for certain powers of the Dedekind η-function, avoiding most of the original machinery.
doi_str_mv 10.1016/j.aam.2003.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33578176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196885804000351</els_id><sourcerecordid>33578176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-9864b2da7cc09e9154b33001f9a38678fd37e34fae98f239a94b8ef123dd96273</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLtu1FXrTdPJD65E_MMBQXQd0vQGM3aasUlFn8y38JnsMAPuXN3Nd87hfoQcUygoUH6-KIxZFiUAK4AXANUOmVBQkJcgql0yAap4LuVM7pODGBcAoErOJkQ--WX2GsJblkzdohk-M9M12UOIyXTpLGY_37kbOpt86DIb0DlvPXYpHpI9Z9qIR9s7JS83189Xd_n88fb-6nKeW6ZUypXkVV02RlgLChWdVTVjANQpwyQX0jVMIKucQSVdyZRRVS3R0ZI1jeKlYFNyuuld9eF9wJj00keLbWs6DEPUjM2EpIKPIN2Atg8x9uj0qvdL039pCnrtSC_06EivHWngenQ0Zk625SZa07redNbHvyAHKahkI3ex4XD89MNjr-PagsXG92iTboL_Z-UXzpF7Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33578176</pqid></control><display><type>article</type><title>Rim hook tableaux and Kostant's η-function coefficients</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Adin, Ron M. ; Frumkin, Avital</creator><creatorcontrib>Adin, Ron M. ; Frumkin, Avital</creatorcontrib><description>Using a 0/1 encoding of Young diagrams and its consequences for rim hook tableaux, we prove a reduction formula of Littlewood for arbitrary characters of the symmetric group, evaluated at elements with all cycle lengths divisible by a given integer. As an application, we find explicitly the coefficients in a formula of Kostant for certain powers of the Dedekind η-function, avoiding most of the original machinery.</description><identifier>ISSN: 0196-8858</identifier><identifier>EISSN: 1090-2074</identifier><identifier>DOI: 10.1016/j.aam.2003.06.004</identifier><identifier>CODEN: AAPMEF</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algebra ; Exact sciences and technology ; Mathematics ; Number theory ; Sciences and techniques of general use</subject><ispartof>Advances in applied mathematics, 2004-10, Vol.33 (3), p.492-511</ispartof><rights>2004 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-9864b2da7cc09e9154b33001f9a38678fd37e34fae98f239a94b8ef123dd96273</citedby><cites>FETCH-LOGICAL-c399t-9864b2da7cc09e9154b33001f9a38678fd37e34fae98f239a94b8ef123dd96273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196885804000351$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16087183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adin, Ron M.</creatorcontrib><creatorcontrib>Frumkin, Avital</creatorcontrib><title>Rim hook tableaux and Kostant's η-function coefficients</title><title>Advances in applied mathematics</title><description>Using a 0/1 encoding of Young diagrams and its consequences for rim hook tableaux, we prove a reduction formula of Littlewood for arbitrary characters of the symmetric group, evaluated at elements with all cycle lengths divisible by a given integer. As an application, we find explicitly the coefficients in a formula of Kostant for certain powers of the Dedekind η-function, avoiding most of the original machinery.</description><subject>Algebra</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Sciences and techniques of general use</subject><issn>0196-8858</issn><issn>1090-2074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gLtu1FXrTdPJD65E_MMBQXQd0vQGM3aasUlFn8y38JnsMAPuXN3Nd87hfoQcUygoUH6-KIxZFiUAK4AXANUOmVBQkJcgql0yAap4LuVM7pODGBcAoErOJkQ--WX2GsJblkzdohk-M9M12UOIyXTpLGY_37kbOpt86DIb0DlvPXYpHpI9Z9qIR9s7JS83189Xd_n88fb-6nKeW6ZUypXkVV02RlgLChWdVTVjANQpwyQX0jVMIKucQSVdyZRRVS3R0ZI1jeKlYFNyuuld9eF9wJj00keLbWs6DEPUjM2EpIKPIN2Atg8x9uj0qvdL039pCnrtSC_06EivHWngenQ0Zk625SZa07redNbHvyAHKahkI3ex4XD89MNjr-PagsXG92iTboL_Z-UXzpF7Yg</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Adin, Ron M.</creator><creator>Frumkin, Avital</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041001</creationdate><title>Rim hook tableaux and Kostant's η-function coefficients</title><author>Adin, Ron M. ; Frumkin, Avital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-9864b2da7cc09e9154b33001f9a38678fd37e34fae98f239a94b8ef123dd96273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algebra</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adin, Ron M.</creatorcontrib><creatorcontrib>Frumkin, Avital</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adin, Ron M.</au><au>Frumkin, Avital</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rim hook tableaux and Kostant's η-function coefficients</atitle><jtitle>Advances in applied mathematics</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>33</volume><issue>3</issue><spage>492</spage><epage>511</epage><pages>492-511</pages><issn>0196-8858</issn><eissn>1090-2074</eissn><coden>AAPMEF</coden><abstract>Using a 0/1 encoding of Young diagrams and its consequences for rim hook tableaux, we prove a reduction formula of Littlewood for arbitrary characters of the symmetric group, evaluated at elements with all cycle lengths divisible by a given integer. As an application, we find explicitly the coefficients in a formula of Kostant for certain powers of the Dedekind η-function, avoiding most of the original machinery.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aam.2003.06.004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8858
ispartof Advances in applied mathematics, 2004-10, Vol.33 (3), p.492-511
issn 0196-8858
1090-2074
language eng
recordid cdi_proquest_miscellaneous_33578176
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebra
Exact sciences and technology
Mathematics
Number theory
Sciences and techniques of general use
title Rim hook tableaux and Kostant's η-function coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rim%20hook%20tableaux%20and%20Kostant's%20%CE%B7-function%20coefficients&rft.jtitle=Advances%20in%20applied%20mathematics&rft.au=Adin,%20Ron%20M.&rft.date=2004-10-01&rft.volume=33&rft.issue=3&rft.spage=492&rft.epage=511&rft.pages=492-511&rft.issn=0196-8858&rft.eissn=1090-2074&rft.coden=AAPMEF&rft_id=info:doi/10.1016/j.aam.2003.06.004&rft_dat=%3Cproquest_cross%3E33578176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33578176&rft_id=info:pmid/&rft_els_id=S0196885804000351&rfr_iscdi=true