Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles
The size and shape of nanocrystals have a strong effect on the optical, electrical and catalytic properties. Therefore, controlling the size, shape and structure of nanocrystals is technically important. The controlled synthesis of CuO nanostructures was achieved using a hydrothermal process by simp...
Gespeichert in:
Veröffentlicht in: | Surface and interface analysis 2009-03, Vol.41 (3), p.259-263 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | 3 |
container_start_page | 259 |
container_title | Surface and interface analysis |
container_volume | 41 |
creator | Neupane, Madhav Prasad Kim, Yu Kyoung Park, Il Song Kim, Kyoung A Lee, Min Ho Bae, Tae Sung |
description | The size and shape of nanocrystals have a strong effect on the optical, electrical and catalytic properties. Therefore, controlling the size, shape and structure of nanocrystals is technically important. The controlled synthesis of CuO nanostructures was achieved using a hydrothermal process by simply controlling the precipitation reaction temperature between copper nitrate trihydrate and sodium hydroxide. The Scanning Electron Microscopy (SEM), EDS, XRD, and FTIR analysis revealed that the synthesized product at 200 °C is of pure copper oxide particles. From Scherrer formula, the prepared CuO particles varied approximately 3–7 nm in size simply by varying the reaction temperature. The synthesized particles exhibited a regular flake like morphology and had a uniform size distribution. The morphology and size depend on the reaction conditions. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sia.3009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33571785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33571785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4309-bebf85a29106d7e82419d8c78c18517a7bce19fd9db8d8bf1d6ae9fc9a7edbbe3</originalsourceid><addsrcrecordid>eNp10EFP3DAQhmGraqUutBI_wRcQl1Db2cT2EaFCUVftAVBvWBN7whqcOLWzwP77Gu2KW08jjR69h4-QI87OOGPiW_ZwVjOmP5AFZ7qttObqI1kwvhSVWAr-mRzk_MgYU7VqF-T-FocJE8ybhNQl_4wjHWKa1jHEB28hULuG8QEzjT1db12K8xrTACFs6ZRwgoSO2jiVBo2v3iEdYYzlPXsbMH8hn3oIGb_u7yG5u_x-e_GjWv2-ur44X1V2WTNdddj1qgGhOWudRCWWXDtlpbJcNVyC7Cxy3TvtOuVU13PXAureapDoug7rQ3Ky604p_t1gns3gs8UQYMS4yaauG8mlago83UGbYs4JezMlP0DaGs7M24CmDGjeBiz0eN-EXIboE4zW53cvOBeylqK4audefMDtf3vm5vp83917n2d8ffeQnkxbgo358-vKsJ9CrJgsjfofc8iQuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33571785</pqid></control><display><type>article</type><title>Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles</title><source>Access via Wiley Online Library</source><creator>Neupane, Madhav Prasad ; Kim, Yu Kyoung ; Park, Il Song ; Kim, Kyoung A ; Lee, Min Ho ; Bae, Tae Sung</creator><creatorcontrib>Neupane, Madhav Prasad ; Kim, Yu Kyoung ; Park, Il Song ; Kim, Kyoung A ; Lee, Min Ho ; Bae, Tae Sung</creatorcontrib><description>The size and shape of nanocrystals have a strong effect on the optical, electrical and catalytic properties. Therefore, controlling the size, shape and structure of nanocrystals is technically important. The controlled synthesis of CuO nanostructures was achieved using a hydrothermal process by simply controlling the precipitation reaction temperature between copper nitrate trihydrate and sodium hydroxide. The Scanning Electron Microscopy (SEM), EDS, XRD, and FTIR analysis revealed that the synthesized product at 200 °C is of pure copper oxide particles. From Scherrer formula, the prepared CuO particles varied approximately 3–7 nm in size simply by varying the reaction temperature. The synthesized particles exhibited a regular flake like morphology and had a uniform size distribution. The morphology and size depend on the reaction conditions. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.3009</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Clusters, nanoparticles, and nanocrystalline materials ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; crystal structure ; Electrical properties of specific thin films ; Electrical properties of specific thin films and layer structures (multilayers, superlattices, quantum wells, wires, and dots) ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Materials science ; Nanocrystalline materials ; Nanocrystals and nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; nanostructures ; optical materials ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; semiconductor ; Structure of solids and liquids; crystallography ; X-ray diffraction</subject><ispartof>Surface and interface analysis, 2009-03, Vol.41 (3), p.259-263</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4309-bebf85a29106d7e82419d8c78c18517a7bce19fd9db8d8bf1d6ae9fc9a7edbbe3</citedby><cites>FETCH-LOGICAL-c4309-bebf85a29106d7e82419d8c78c18517a7bce19fd9db8d8bf1d6ae9fc9a7edbbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.3009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.3009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21127372$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neupane, Madhav Prasad</creatorcontrib><creatorcontrib>Kim, Yu Kyoung</creatorcontrib><creatorcontrib>Park, Il Song</creatorcontrib><creatorcontrib>Kim, Kyoung A</creatorcontrib><creatorcontrib>Lee, Min Ho</creatorcontrib><creatorcontrib>Bae, Tae Sung</creatorcontrib><title>Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>The size and shape of nanocrystals have a strong effect on the optical, electrical and catalytic properties. Therefore, controlling the size, shape and structure of nanocrystals is technically important. The controlled synthesis of CuO nanostructures was achieved using a hydrothermal process by simply controlling the precipitation reaction temperature between copper nitrate trihydrate and sodium hydroxide. The Scanning Electron Microscopy (SEM), EDS, XRD, and FTIR analysis revealed that the synthesized product at 200 °C is of pure copper oxide particles. From Scherrer formula, the prepared CuO particles varied approximately 3–7 nm in size simply by varying the reaction temperature. The synthesized particles exhibited a regular flake like morphology and had a uniform size distribution. The morphology and size depend on the reaction conditions. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>Clusters, nanoparticles, and nanocrystalline materials</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>crystal structure</subject><subject>Electrical properties of specific thin films</subject><subject>Electrical properties of specific thin films and layer structures (multilayers, superlattices, quantum wells, wires, and dots)</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanocrystals and nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>nanostructures</subject><subject>optical materials</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>semiconductor</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp10EFP3DAQhmGraqUutBI_wRcQl1Db2cT2EaFCUVftAVBvWBN7whqcOLWzwP77Gu2KW08jjR69h4-QI87OOGPiW_ZwVjOmP5AFZ7qttObqI1kwvhSVWAr-mRzk_MgYU7VqF-T-FocJE8ybhNQl_4wjHWKa1jHEB28hULuG8QEzjT1db12K8xrTACFs6ZRwgoSO2jiVBo2v3iEdYYzlPXsbMH8hn3oIGb_u7yG5u_x-e_GjWv2-ur44X1V2WTNdddj1qgGhOWudRCWWXDtlpbJcNVyC7Cxy3TvtOuVU13PXAureapDoug7rQ3Ky604p_t1gns3gs8UQYMS4yaauG8mlago83UGbYs4JezMlP0DaGs7M24CmDGjeBiz0eN-EXIboE4zW53cvOBeylqK4audefMDtf3vm5vp83917n2d8ffeQnkxbgo358-vKsJ9CrJgsjfofc8iQuA</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Neupane, Madhav Prasad</creator><creator>Kim, Yu Kyoung</creator><creator>Park, Il Song</creator><creator>Kim, Kyoung A</creator><creator>Lee, Min Ho</creator><creator>Bae, Tae Sung</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200903</creationdate><title>Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles</title><author>Neupane, Madhav Prasad ; Kim, Yu Kyoung ; Park, Il Song ; Kim, Kyoung A ; Lee, Min Ho ; Bae, Tae Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4309-bebf85a29106d7e82419d8c78c18517a7bce19fd9db8d8bf1d6ae9fc9a7edbbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Clusters, nanoparticles, and nanocrystalline materials</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>crystal structure</topic><topic>Electrical properties of specific thin films</topic><topic>Electrical properties of specific thin films and layer structures (multilayers, superlattices, quantum wells, wires, and dots)</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanocrystals and nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>nanostructures</topic><topic>optical materials</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>semiconductor</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neupane, Madhav Prasad</creatorcontrib><creatorcontrib>Kim, Yu Kyoung</creatorcontrib><creatorcontrib>Park, Il Song</creatorcontrib><creatorcontrib>Kim, Kyoung A</creatorcontrib><creatorcontrib>Lee, Min Ho</creatorcontrib><creatorcontrib>Bae, Tae Sung</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neupane, Madhav Prasad</au><au>Kim, Yu Kyoung</au><au>Park, Il Song</au><au>Kim, Kyoung A</au><au>Lee, Min Ho</au><au>Bae, Tae Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2009-03</date><risdate>2009</risdate><volume>41</volume><issue>3</issue><spage>259</spage><epage>263</epage><pages>259-263</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>The size and shape of nanocrystals have a strong effect on the optical, electrical and catalytic properties. Therefore, controlling the size, shape and structure of nanocrystals is technically important. The controlled synthesis of CuO nanostructures was achieved using a hydrothermal process by simply controlling the precipitation reaction temperature between copper nitrate trihydrate and sodium hydroxide. The Scanning Electron Microscopy (SEM), EDS, XRD, and FTIR analysis revealed that the synthesized product at 200 °C is of pure copper oxide particles. From Scherrer formula, the prepared CuO particles varied approximately 3–7 nm in size simply by varying the reaction temperature. The synthesized particles exhibited a regular flake like morphology and had a uniform size distribution. The morphology and size depend on the reaction conditions. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/sia.3009</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-2421 |
ispartof | Surface and interface analysis, 2009-03, Vol.41 (3), p.259-263 |
issn | 0142-2421 1096-9918 |
language | eng |
recordid | cdi_proquest_miscellaneous_33571785 |
source | Access via Wiley Online Library |
subjects | Clusters, nanoparticles, and nanocrystalline materials Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology crystal structure Electrical properties of specific thin films Electrical properties of specific thin films and layer structures (multilayers, superlattices, quantum wells, wires, and dots) Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Materials science Nanocrystalline materials Nanocrystals and nanoparticles Nanoscale materials and structures: fabrication and characterization Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals nanostructures optical materials Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Physics semiconductor Structure of solids and liquids crystallography X-ray diffraction |
title | Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20driven%20morphological%20changes%20of%20hydrothermally%20prepared%20copper%20oxide%20nanoparticles&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Neupane,%20Madhav%20Prasad&rft.date=2009-03&rft.volume=41&rft.issue=3&rft.spage=259&rft.epage=263&rft.pages=259-263&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.3009&rft_dat=%3Cproquest_cross%3E33571785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33571785&rft_id=info:pmid/&rfr_iscdi=true |