Improvement of Arab Digits Recognition Rate Based in the Parameters Choice

Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hadri, C, Boughazi, M, Fezari, M
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue
container_start_page 516
container_title
container_volume 1019
creator Hadri, C
Boughazi, M
Fezari, M
description Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).
doi_str_mv 10.1063/1.2953036
format Conference Proceeding
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_33569075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33569075</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-79e718dfbbcd28d7576d399537cba7f2a8b8ae6ae64da8fbd905cf445e7b2edc3</originalsourceid><addsrcrecordid>eNotjktLAzEYAAMqWGsP_oOcvG3Nbt7HulqtFJSi4K3k8aWNdDd1k_r7XVAYmNswCN3UZF4TQe_qeaM5JVScoZmWikjKGRkh52hCiGZVw-jnJbrK-YuQRkupJuhl1R2H9AMd9AWngBeDsfgh7mLJeAMu7fpYYurxxhTA9yaDx7HHZQ_4zQymgwJDxu0-RQfX6CKYQ4bZv6foY_n43j5X69enVbtYV8daiVJJDbJWPljrfKO85FJ4qsdx6ayRoTHKKgNihHmjgvWacBcY4yBtA97RKbr9647j3yfIZdvF7OBwMD2kU95SyoUmktNfpOFQpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>33569075</pqid></control><display><type>conference_proceeding</type><title>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</title><source>AIP Journals Complete</source><creator>Hadri, C ; Boughazi, M ; Fezari, M</creator><creatorcontrib>Hadri, C ; Boughazi, M ; Fezari, M</creatorcontrib><description>Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735405400</identifier><identifier>ISBN: 0735405409</identifier><identifier>DOI: 10.1063/1.2953036</identifier><language>eng</language><ispartof>Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019), 2008, Vol.1019, p.516-519</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hadri, C</creatorcontrib><creatorcontrib>Boughazi, M</creatorcontrib><creatorcontrib>Fezari, M</creatorcontrib><title>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</title><title>Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019)</title><description>Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).</description><issn>0094-243X</issn><isbn>9780735405400</isbn><isbn>0735405409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjktLAzEYAAMqWGsP_oOcvG3Nbt7HulqtFJSi4K3k8aWNdDd1k_r7XVAYmNswCN3UZF4TQe_qeaM5JVScoZmWikjKGRkh52hCiGZVw-jnJbrK-YuQRkupJuhl1R2H9AMd9AWngBeDsfgh7mLJeAMu7fpYYurxxhTA9yaDx7HHZQ_4zQymgwJDxu0-RQfX6CKYQ4bZv6foY_n43j5X69enVbtYV8daiVJJDbJWPljrfKO85FJ4qsdx6ayRoTHKKgNihHmjgvWacBcY4yBtA97RKbr9647j3yfIZdvF7OBwMD2kU95SyoUmktNfpOFQpg</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Hadri, C</creator><creator>Boughazi, M</creator><creator>Fezari, M</creator><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080101</creationdate><title>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</title><author>Hadri, C ; Boughazi, M ; Fezari, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-79e718dfbbcd28d7576d399537cba7f2a8b8ae6ae64da8fbd905cf445e7b2edc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadri, C</creatorcontrib><creatorcontrib>Boughazi, M</creatorcontrib><creatorcontrib>Fezari, M</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadri, C</au><au>Boughazi, M</au><au>Fezari, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</atitle><btitle>Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019)</btitle><date>2008-01-01</date><risdate>2008</risdate><volume>1019</volume><spage>516</spage><epage>519</epage><pages>516-519</pages><issn>0094-243X</issn><isbn>9780735405400</isbn><isbn>0735405409</isbn><abstract>Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).</abstract><doi>10.1063/1.2953036</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019), 2008, Vol.1019, p.516-519
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_33569075
source AIP Journals Complete
title Improvement of Arab Digits Recognition Rate Based in the Parameters Choice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvement%20of%20Arab%20Digits%20Recognition%20Rate%20Based%20in%20the%20Parameters%20Choice&rft.btitle=Intelligent%20Systems%20and%20Automation:%201st%20Mediterranean%20Conference%20on%20Intelligent%20Systems%20and%20Automation%20(CISA%20'08)%20(AIP%20Conference%20Proceedings%20Volume%201019)&rft.au=Hadri,%20C&rft.date=2008-01-01&rft.volume=1019&rft.spage=516&rft.epage=519&rft.pages=516-519&rft.issn=0094-243X&rft.isbn=9780735405400&rft.isbn_list=0735405409&rft_id=info:doi/10.1063/1.2953036&rft_dat=%3Cproquest%3E33569075%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33569075&rft_id=info:pmid/&rfr_iscdi=true