Improvement of Arab Digits Recognition Rate Based in the Parameters Choice
Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 519 |
---|---|
container_issue | |
container_start_page | 516 |
container_title | |
container_volume | 1019 |
creator | Hadri, C Boughazi, M Fezari, M |
description | Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC). |
doi_str_mv | 10.1063/1.2953036 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_33569075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33569075</sourcerecordid><originalsourceid>FETCH-LOGICAL-p186t-79e718dfbbcd28d7576d399537cba7f2a8b8ae6ae64da8fbd905cf445e7b2edc3</originalsourceid><addsrcrecordid>eNotjktLAzEYAAMqWGsP_oOcvG3Nbt7HulqtFJSi4K3k8aWNdDd1k_r7XVAYmNswCN3UZF4TQe_qeaM5JVScoZmWikjKGRkh52hCiGZVw-jnJbrK-YuQRkupJuhl1R2H9AMd9AWngBeDsfgh7mLJeAMu7fpYYurxxhTA9yaDx7HHZQ_4zQymgwJDxu0-RQfX6CKYQ4bZv6foY_n43j5X69enVbtYV8daiVJJDbJWPljrfKO85FJ4qsdx6ayRoTHKKgNihHmjgvWacBcY4yBtA97RKbr9647j3yfIZdvF7OBwMD2kU95SyoUmktNfpOFQpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>33569075</pqid></control><display><type>conference_proceeding</type><title>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</title><source>AIP Journals Complete</source><creator>Hadri, C ; Boughazi, M ; Fezari, M</creator><creatorcontrib>Hadri, C ; Boughazi, M ; Fezari, M</creatorcontrib><description>Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735405400</identifier><identifier>ISBN: 0735405409</identifier><identifier>DOI: 10.1063/1.2953036</identifier><language>eng</language><ispartof>Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019), 2008, Vol.1019, p.516-519</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hadri, C</creatorcontrib><creatorcontrib>Boughazi, M</creatorcontrib><creatorcontrib>Fezari, M</creatorcontrib><title>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</title><title>Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019)</title><description>Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).</description><issn>0094-243X</issn><isbn>9780735405400</isbn><isbn>0735405409</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotjktLAzEYAAMqWGsP_oOcvG3Nbt7HulqtFJSi4K3k8aWNdDd1k_r7XVAYmNswCN3UZF4TQe_qeaM5JVScoZmWikjKGRkh52hCiGZVw-jnJbrK-YuQRkupJuhl1R2H9AMd9AWngBeDsfgh7mLJeAMu7fpYYurxxhTA9yaDx7HHZQ_4zQymgwJDxu0-RQfX6CKYQ4bZv6foY_n43j5X69enVbtYV8daiVJJDbJWPljrfKO85FJ4qsdx6ayRoTHKKgNihHmjgvWacBcY4yBtA97RKbr9647j3yfIZdvF7OBwMD2kU95SyoUmktNfpOFQpg</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Hadri, C</creator><creator>Boughazi, M</creator><creator>Fezari, M</creator><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080101</creationdate><title>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</title><author>Hadri, C ; Boughazi, M ; Fezari, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p186t-79e718dfbbcd28d7576d399537cba7f2a8b8ae6ae64da8fbd905cf445e7b2edc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadri, C</creatorcontrib><creatorcontrib>Boughazi, M</creatorcontrib><creatorcontrib>Fezari, M</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadri, C</au><au>Boughazi, M</au><au>Fezari, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvement of Arab Digits Recognition Rate Based in the Parameters Choice</atitle><btitle>Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019)</btitle><date>2008-01-01</date><risdate>2008</risdate><volume>1019</volume><spage>516</spage><epage>519</epage><pages>516-519</pages><issn>0094-243X</issn><isbn>9780735405400</isbn><isbn>0735405409</isbn><abstract>Automatic speech recognition (ASR) is the process of automatically recognizing the speech on the basis of information obtained by acoustic features extracted from the speech signal. Because features extraction is the first component in ASR systems, the quality of the later component depends from the quality of feature extractor. The goal of this work is to study and implement features (representations) extraction, which are robust to the differences between the acoustic conditions of training and evolution. These features will be evaluated in an Automatic Arab digits recognition system. A particular attention will be taken to the robust features extraction methods (CMS, CGN, RASTAPLP, MBLPCC, and LPC MFCC).</abstract><doi>10.1063/1.2953036</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | Intelligent Systems and Automation: 1st Mediterranean Conference on Intelligent Systems and Automation (CISA '08) (AIP Conference Proceedings Volume 1019), 2008, Vol.1019, p.516-519 |
issn | 0094-243X |
language | eng |
recordid | cdi_proquest_miscellaneous_33569075 |
source | AIP Journals Complete |
title | Improvement of Arab Digits Recognition Rate Based in the Parameters Choice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvement%20of%20Arab%20Digits%20Recognition%20Rate%20Based%20in%20the%20Parameters%20Choice&rft.btitle=Intelligent%20Systems%20and%20Automation:%201st%20Mediterranean%20Conference%20on%20Intelligent%20Systems%20and%20Automation%20(CISA%20'08)%20(AIP%20Conference%20Proceedings%20Volume%201019)&rft.au=Hadri,%20C&rft.date=2008-01-01&rft.volume=1019&rft.spage=516&rft.epage=519&rft.pages=516-519&rft.issn=0094-243X&rft.isbn=9780735405400&rft.isbn_list=0735405409&rft_id=info:doi/10.1063/1.2953036&rft_dat=%3Cproquest%3E33569075%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33569075&rft_id=info:pmid/&rfr_iscdi=true |