The generalized totally geodesic Radon transform and its application to texture analysis

The generalized totally geodesic Radon transform associates the mean values over spherical tori to a function f defined on S3⊂H, where the elements of S3 are considered as quaternions representing rotations. It is introduced into the analysis of crystallographic preferred orientation and identified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2009-03, Vol.32 (4), p.379-394
Hauptverfasser: Bernstein, Swanhild, Hielscher, Ralf, Schaeben, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 4
container_start_page 379
container_title Mathematical methods in the applied sciences
container_volume 32
creator Bernstein, Swanhild
Hielscher, Ralf
Schaeben, Helmut
description The generalized totally geodesic Radon transform associates the mean values over spherical tori to a function f defined on S3⊂H, where the elements of S3 are considered as quaternions representing rotations. It is introduced into the analysis of crystallographic preferred orientation and identified with the probability density function corresponding to the angle distribution function W. Eventually, this communication suggests a new approach to recover an approximation of f from data sampling W. At the same time it provides additional clarification of a recently suggested method applying reproducing kernels and radial basis functions by instructive insight into its involved geometry. The focus is on the correspondence of geometrical and group features rather than on the mapping of functions and their spaces. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.1042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33561032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33561032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3642-29ad62ddc56855af9123336c445fa95e677047047b4fd325b0dd8815674e6b333</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgT9iL4mU139s9imhV2gpa0VuYJlmNZndrskXrrzelpTdhYIaZhxfmQeiY4HOCMb2oa0gDpzuoR3BZ5oQXchf1MClwzinh--ggxg-M8YAQ2kOv03ebvdnGBvDu15qsazvwfpl2rbHR6ewRTNtkXYAmVm2oM2hM5rqYwXzunYbOra5t1tmfbhFsOoNfRhcP0V4FPtqjTe-j55vr6dVtPnoY3l1djnLNJKc5LcFIaowWciAEVCWhjDGpORcVlMLKosB8VTNeGUbFDBszGBAhC27lLKF9dLrOnYf2a2Fjp2oXtfUeGtsuomJMSIIZTeDZGtShjTHYSs2DqyEsFcFqpU4ldWqlLqEnm0yIGnyVftcubnmazGEicOLyNfftvF3-m6fG48tN7oZ3Mena8hA-lSxYIdTLZKjuxxP2JGmhOPsDn4qLFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33561032</pqid></control><display><type>article</type><title>The generalized totally geodesic Radon transform and its application to texture analysis</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Bernstein, Swanhild ; Hielscher, Ralf ; Schaeben, Helmut</creator><creatorcontrib>Bernstein, Swanhild ; Hielscher, Ralf ; Schaeben, Helmut</creatorcontrib><description>The generalized totally geodesic Radon transform associates the mean values over spherical tori to a function f defined on S3⊂H, where the elements of S3 are considered as quaternions representing rotations. It is introduced into the analysis of crystallographic preferred orientation and identified with the probability density function corresponding to the angle distribution function W. Eventually, this communication suggests a new approach to recover an approximation of f from data sampling W. At the same time it provides additional clarification of a recently suggested method applying reproducing kernels and radial basis functions by instructive insight into its involved geometry. The focus is on the correspondence of geometrical and group features rather than on the mapping of functions and their spaces. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.1042</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Abstract harmonic analysis ; crystallography ; Differential geometry ; Exact sciences and technology ; Functional analysis ; Geometry ; Global analysis, analysis on manifolds ; harmonic analysis ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; texture analysis ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; totally geodesic Radon transform</subject><ispartof>Mathematical methods in the applied sciences, 2009-03, Vol.32 (4), p.379-394</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3642-29ad62ddc56855af9123336c445fa95e677047047b4fd325b0dd8815674e6b333</citedby><cites>FETCH-LOGICAL-c3642-29ad62ddc56855af9123336c445fa95e677047047b4fd325b0dd8815674e6b333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.1042$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.1042$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21120150$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernstein, Swanhild</creatorcontrib><creatorcontrib>Hielscher, Ralf</creatorcontrib><creatorcontrib>Schaeben, Helmut</creatorcontrib><title>The generalized totally geodesic Radon transform and its application to texture analysis</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>The generalized totally geodesic Radon transform associates the mean values over spherical tori to a function f defined on S3⊂H, where the elements of S3 are considered as quaternions representing rotations. It is introduced into the analysis of crystallographic preferred orientation and identified with the probability density function corresponding to the angle distribution function W. Eventually, this communication suggests a new approach to recover an approximation of f from data sampling W. At the same time it provides additional clarification of a recently suggested method applying reproducing kernels and radial basis functions by instructive insight into its involved geometry. The focus is on the correspondence of geometrical and group features rather than on the mapping of functions and their spaces. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>Abstract harmonic analysis</subject><subject>crystallography</subject><subject>Differential geometry</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Geometry</subject><subject>Global analysis, analysis on manifolds</subject><subject>harmonic analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>texture analysis</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>totally geodesic Radon transform</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgT9iL4mU139s9imhV2gpa0VuYJlmNZndrskXrrzelpTdhYIaZhxfmQeiY4HOCMb2oa0gDpzuoR3BZ5oQXchf1MClwzinh--ggxg-M8YAQ2kOv03ebvdnGBvDu15qsazvwfpl2rbHR6ewRTNtkXYAmVm2oM2hM5rqYwXzunYbOra5t1tmfbhFsOoNfRhcP0V4FPtqjTe-j55vr6dVtPnoY3l1djnLNJKc5LcFIaowWciAEVCWhjDGpORcVlMLKosB8VTNeGUbFDBszGBAhC27lLKF9dLrOnYf2a2Fjp2oXtfUeGtsuomJMSIIZTeDZGtShjTHYSs2DqyEsFcFqpU4ldWqlLqEnm0yIGnyVftcubnmazGEicOLyNfftvF3-m6fG48tN7oZ3Mena8hA-lSxYIdTLZKjuxxP2JGmhOPsDn4qLFA</recordid><startdate>20090315</startdate><enddate>20090315</enddate><creator>Bernstein, Swanhild</creator><creator>Hielscher, Ralf</creator><creator>Schaeben, Helmut</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20090315</creationdate><title>The generalized totally geodesic Radon transform and its application to texture analysis</title><author>Bernstein, Swanhild ; Hielscher, Ralf ; Schaeben, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3642-29ad62ddc56855af9123336c445fa95e677047047b4fd325b0dd8815674e6b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Abstract harmonic analysis</topic><topic>crystallography</topic><topic>Differential geometry</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Geometry</topic><topic>Global analysis, analysis on manifolds</topic><topic>harmonic analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>texture analysis</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>totally geodesic Radon transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, Swanhild</creatorcontrib><creatorcontrib>Hielscher, Ralf</creatorcontrib><creatorcontrib>Schaeben, Helmut</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, Swanhild</au><au>Hielscher, Ralf</au><au>Schaeben, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The generalized totally geodesic Radon transform and its application to texture analysis</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2009-03-15</date><risdate>2009</risdate><volume>32</volume><issue>4</issue><spage>379</spage><epage>394</epage><pages>379-394</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>The generalized totally geodesic Radon transform associates the mean values over spherical tori to a function f defined on S3⊂H, where the elements of S3 are considered as quaternions representing rotations. It is introduced into the analysis of crystallographic preferred orientation and identified with the probability density function corresponding to the angle distribution function W. Eventually, this communication suggests a new approach to recover an approximation of f from data sampling W. At the same time it provides additional clarification of a recently suggested method applying reproducing kernels and radial basis functions by instructive insight into its involved geometry. The focus is on the correspondence of geometrical and group features rather than on the mapping of functions and their spaces. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.1042</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2009-03, Vol.32 (4), p.379-394
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_33561032
source Wiley Online Library - AutoHoldings Journals
subjects Abstract harmonic analysis
crystallography
Differential geometry
Exact sciences and technology
Functional analysis
Geometry
Global analysis, analysis on manifolds
harmonic analysis
Mathematical analysis
Mathematics
Sciences and techniques of general use
texture analysis
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
totally geodesic Radon transform
title The generalized totally geodesic Radon transform and its application to texture analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20generalized%20totally%20geodesic%20Radon%20transform%20and%20its%20application%20to%20texture%20analysis&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Bernstein,%20Swanhild&rft.date=2009-03-15&rft.volume=32&rft.issue=4&rft.spage=379&rft.epage=394&rft.pages=379-394&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.1042&rft_dat=%3Cproquest_cross%3E33561032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33561032&rft_id=info:pmid/&rfr_iscdi=true