Three new cut sets of fuzzy sets and new theories of fuzzy sets
Three new cut sets are introduced from the view points of neighborhood and Q -neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained....
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2009-03, Vol.57 (5), p.691-701 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 701 |
---|---|
container_issue | 5 |
container_start_page | 691 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 57 |
creator | Yuan, Xue-hai Li, Hongxing Lee, E. Stanley |
description | Three new cut sets are introduced from the view points of neighborhood and
Q
-neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set. |
doi_str_mv | 10.1016/j.camwa.2008.05.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33560384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812210800672X</els_id><sourcerecordid>33560384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gZecxEvizO4m2RxEpPgFBS_1vGx2JzSlTepuaml_vWnjyUNPw_A-78A8jN0iJAiYPSwSa1Zbk3AAlUCagJRnbIQqF3GeZeqcjUAVKkbO8ZJdhbAAACk4jNjTbO6Jooa2kd10UaAuRG0VVZv9fjdspnHHuJtT62v6F1-zi8osA938zTH7en2ZTd7j6efbx-R5GluJvIuFc1RmppDOlsJVEtKyBAkS0eUORaocL2yBlSVDAhRWRpSpshyxIMyNEmN2N9xd-_Z7Q6HTqzpYWi5NQ-0maCHSDISSPXh_EkRQnEPGU96jYkCtb0PwVOm1r1fG73pIH7zqhT561QevGlLde-1bj0OL-nd_avI62JoaS672ZDvt2vpk_xeaOoFn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082206252</pqid></control><display><type>article</type><title>Three new cut sets of fuzzy sets and new theories of fuzzy sets</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yuan, Xue-hai ; Li, Hongxing ; Lee, E. Stanley</creator><creatorcontrib>Yuan, Xue-hai ; Li, Hongxing ; Lee, E. Stanley</creatorcontrib><description>Three new cut sets are introduced from the view points of neighborhood and
Q
-neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.05.044</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Category ; Cut set ; Decomposition theorem ; Descriptions ; Extension principle ; Fuzzy ; Fuzzy linear mapping ; Fuzzy logic ; Fuzzy set theory ; Mathematical models ; Order set embedding ; Representation theorem ; Representations ; Set embedding ; Theorems ; Topology</subject><ispartof>Computers & mathematics with applications (1987), 2009-03, Vol.57 (5), p.691-701</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</citedby><cites>FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089812210800672X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yuan, Xue-hai</creatorcontrib><creatorcontrib>Li, Hongxing</creatorcontrib><creatorcontrib>Lee, E. Stanley</creatorcontrib><title>Three new cut sets of fuzzy sets and new theories of fuzzy sets</title><title>Computers & mathematics with applications (1987)</title><description>Three new cut sets are introduced from the view points of neighborhood and
Q
-neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.</description><subject>Category</subject><subject>Cut set</subject><subject>Decomposition theorem</subject><subject>Descriptions</subject><subject>Extension principle</subject><subject>Fuzzy</subject><subject>Fuzzy linear mapping</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Mathematical models</subject><subject>Order set embedding</subject><subject>Representation theorem</subject><subject>Representations</subject><subject>Set embedding</subject><subject>Theorems</subject><subject>Topology</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gZecxEvizO4m2RxEpPgFBS_1vGx2JzSlTepuaml_vWnjyUNPw_A-78A8jN0iJAiYPSwSa1Zbk3AAlUCagJRnbIQqF3GeZeqcjUAVKkbO8ZJdhbAAACk4jNjTbO6Jooa2kd10UaAuRG0VVZv9fjdspnHHuJtT62v6F1-zi8osA938zTH7en2ZTd7j6efbx-R5GluJvIuFc1RmppDOlsJVEtKyBAkS0eUORaocL2yBlSVDAhRWRpSpshyxIMyNEmN2N9xd-_Z7Q6HTqzpYWi5NQ-0maCHSDISSPXh_EkRQnEPGU96jYkCtb0PwVOm1r1fG73pIH7zqhT561QevGlLde-1bj0OL-nd_avI62JoaS672ZDvt2vpk_xeaOoFn</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Yuan, Xue-hai</creator><creator>Li, Hongxing</creator><creator>Lee, E. Stanley</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090301</creationdate><title>Three new cut sets of fuzzy sets and new theories of fuzzy sets</title><author>Yuan, Xue-hai ; Li, Hongxing ; Lee, E. Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Category</topic><topic>Cut set</topic><topic>Decomposition theorem</topic><topic>Descriptions</topic><topic>Extension principle</topic><topic>Fuzzy</topic><topic>Fuzzy linear mapping</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Mathematical models</topic><topic>Order set embedding</topic><topic>Representation theorem</topic><topic>Representations</topic><topic>Set embedding</topic><topic>Theorems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xue-hai</creatorcontrib><creatorcontrib>Li, Hongxing</creatorcontrib><creatorcontrib>Lee, E. Stanley</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xue-hai</au><au>Li, Hongxing</au><au>Lee, E. Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three new cut sets of fuzzy sets and new theories of fuzzy sets</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>57</volume><issue>5</issue><spage>691</spage><epage>701</epage><pages>691-701</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Three new cut sets are introduced from the view points of neighborhood and
Q
-neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.05.044</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2009-03, Vol.57 (5), p.691-701 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_33560384 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Category Cut set Decomposition theorem Descriptions Extension principle Fuzzy Fuzzy linear mapping Fuzzy logic Fuzzy set theory Mathematical models Order set embedding Representation theorem Representations Set embedding Theorems Topology |
title | Three new cut sets of fuzzy sets and new theories of fuzzy sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20new%20cut%20sets%20of%20fuzzy%20sets%20and%20new%20theories%20of%20fuzzy%20sets&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Yuan,%20Xue-hai&rft.date=2009-03-01&rft.volume=57&rft.issue=5&rft.spage=691&rft.epage=701&rft.pages=691-701&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.05.044&rft_dat=%3Cproquest_cross%3E33560384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082206252&rft_id=info:pmid/&rft_els_id=S089812210800672X&rfr_iscdi=true |