Three new cut sets of fuzzy sets and new theories of fuzzy sets

Three new cut sets are introduced from the view points of neighborhood and Q -neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2009-03, Vol.57 (5), p.691-701
Hauptverfasser: Yuan, Xue-hai, Li, Hongxing, Lee, E. Stanley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 701
container_issue 5
container_start_page 691
container_title Computers & mathematics with applications (1987)
container_volume 57
creator Yuan, Xue-hai
Li, Hongxing
Lee, E. Stanley
description Three new cut sets are introduced from the view points of neighborhood and Q -neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.
doi_str_mv 10.1016/j.camwa.2008.05.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33560384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812210800672X</els_id><sourcerecordid>33560384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gZecxEvizO4m2RxEpPgFBS_1vGx2JzSlTepuaml_vWnjyUNPw_A-78A8jN0iJAiYPSwSa1Zbk3AAlUCagJRnbIQqF3GeZeqcjUAVKkbO8ZJdhbAAACk4jNjTbO6Jooa2kd10UaAuRG0VVZv9fjdspnHHuJtT62v6F1-zi8osA938zTH7en2ZTd7j6efbx-R5GluJvIuFc1RmppDOlsJVEtKyBAkS0eUORaocL2yBlSVDAhRWRpSpshyxIMyNEmN2N9xd-_Z7Q6HTqzpYWi5NQ-0maCHSDISSPXh_EkRQnEPGU96jYkCtb0PwVOm1r1fG73pIH7zqhT561QevGlLde-1bj0OL-nd_avI62JoaS672ZDvt2vpk_xeaOoFn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082206252</pqid></control><display><type>article</type><title>Three new cut sets of fuzzy sets and new theories of fuzzy sets</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yuan, Xue-hai ; Li, Hongxing ; Lee, E. Stanley</creator><creatorcontrib>Yuan, Xue-hai ; Li, Hongxing ; Lee, E. Stanley</creatorcontrib><description>Three new cut sets are introduced from the view points of neighborhood and Q -neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.05.044</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Category ; Cut set ; Decomposition theorem ; Descriptions ; Extension principle ; Fuzzy ; Fuzzy linear mapping ; Fuzzy logic ; Fuzzy set theory ; Mathematical models ; Order set embedding ; Representation theorem ; Representations ; Set embedding ; Theorems ; Topology</subject><ispartof>Computers &amp; mathematics with applications (1987), 2009-03, Vol.57 (5), p.691-701</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</citedby><cites>FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S089812210800672X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yuan, Xue-hai</creatorcontrib><creatorcontrib>Li, Hongxing</creatorcontrib><creatorcontrib>Lee, E. Stanley</creatorcontrib><title>Three new cut sets of fuzzy sets and new theories of fuzzy sets</title><title>Computers &amp; mathematics with applications (1987)</title><description>Three new cut sets are introduced from the view points of neighborhood and Q -neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.</description><subject>Category</subject><subject>Cut set</subject><subject>Decomposition theorem</subject><subject>Descriptions</subject><subject>Extension principle</subject><subject>Fuzzy</subject><subject>Fuzzy linear mapping</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Mathematical models</subject><subject>Order set embedding</subject><subject>Representation theorem</subject><subject>Representations</subject><subject>Set embedding</subject><subject>Theorems</subject><subject>Topology</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gZecxEvizO4m2RxEpPgFBS_1vGx2JzSlTepuaml_vWnjyUNPw_A-78A8jN0iJAiYPSwSa1Zbk3AAlUCagJRnbIQqF3GeZeqcjUAVKkbO8ZJdhbAAACk4jNjTbO6Jooa2kd10UaAuRG0VVZv9fjdspnHHuJtT62v6F1-zi8osA938zTH7en2ZTd7j6efbx-R5GluJvIuFc1RmppDOlsJVEtKyBAkS0eUORaocL2yBlSVDAhRWRpSpshyxIMyNEmN2N9xd-_Z7Q6HTqzpYWi5NQ-0maCHSDISSPXh_EkRQnEPGU96jYkCtb0PwVOm1r1fG73pIH7zqhT561QevGlLde-1bj0OL-nd_avI62JoaS672ZDvt2vpk_xeaOoFn</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Yuan, Xue-hai</creator><creator>Li, Hongxing</creator><creator>Lee, E. Stanley</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090301</creationdate><title>Three new cut sets of fuzzy sets and new theories of fuzzy sets</title><author>Yuan, Xue-hai ; Li, Hongxing ; Lee, E. Stanley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3ddeb6a94dcb3df405bb040411d7d1358d29c91fceae3081fa3b58c2119e17a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Category</topic><topic>Cut set</topic><topic>Decomposition theorem</topic><topic>Descriptions</topic><topic>Extension principle</topic><topic>Fuzzy</topic><topic>Fuzzy linear mapping</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Mathematical models</topic><topic>Order set embedding</topic><topic>Representation theorem</topic><topic>Representations</topic><topic>Set embedding</topic><topic>Theorems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xue-hai</creatorcontrib><creatorcontrib>Li, Hongxing</creatorcontrib><creatorcontrib>Lee, E. Stanley</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xue-hai</au><au>Li, Hongxing</au><au>Lee, E. Stanley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three new cut sets of fuzzy sets and new theories of fuzzy sets</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>57</volume><issue>5</issue><spage>691</spage><epage>701</epage><pages>691-701</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Three new cut sets are introduced from the view points of neighborhood and Q -neighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.05.044</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2009-03, Vol.57 (5), p.691-701
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_33560384
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Category
Cut set
Decomposition theorem
Descriptions
Extension principle
Fuzzy
Fuzzy linear mapping
Fuzzy logic
Fuzzy set theory
Mathematical models
Order set embedding
Representation theorem
Representations
Set embedding
Theorems
Topology
title Three new cut sets of fuzzy sets and new theories of fuzzy sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20new%20cut%20sets%20of%20fuzzy%20sets%20and%20new%20theories%20of%20fuzzy%20sets&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Yuan,%20Xue-hai&rft.date=2009-03-01&rft.volume=57&rft.issue=5&rft.spage=691&rft.epage=701&rft.pages=691-701&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.05.044&rft_dat=%3Cproquest_cross%3E33560384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082206252&rft_id=info:pmid/&rft_els_id=S089812210800672X&rfr_iscdi=true