Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium
Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2008-07, Vol.31 (11), p.1257-1282 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1282 |
---|---|
container_issue | 11 |
container_start_page | 1257 |
container_title | Mathematical methods in the applied sciences |
container_volume | 31 |
creator | Peter, Malte A. Böhm, Michael |
description | Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33541264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33541264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</originalsourceid><addsrcrecordid>eNp10E1v1DAQBmALgcRSEH8hF-CAUuz4Kz5WW2gRLXAA9WgNznjXkNiLnRUtvx5HqXrjZI38zKvRS8hLRk8Zpd27aYJTo9QjsmHUmJYJrR6TDWWatqJj4il5VspPSmnPWLchu_PgPWaMc-P2KTgsTfJNcTCGuGtCbPZpSjuM4S_MIcXlc6gbx7IMEIdKZsweXICxwVu3h7jDZQ-aQ8rpWJoJh3CcnpMnHsaCL-7fE_L9w_tv28v26svFx-3ZVeuENKqVftAaVM-91APKweHAjVHguGCMm05BR38wqANKoD0Kqh1S6HvG0XDa8xPyes095PT7iGW2UygOxxEi1mss51KwTokK36zQ5VRKRm8POUyQ7yyjdinS1iJtLbLKV_eRsPTiM0QXygPvqGSqN7K6t6v7E0a8-1-cvb4-W1PbVYcy4-2DhvzLKs21tDefL-ynyxthtl-1Pef_AJsZkG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33541264</pqid></control><display><type>article</type><title>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</title><source>Wiley Journals</source><creator>Peter, Malte A. ; Böhm, Michael</creator><creatorcontrib>Peter, Malte A. ; Böhm, Michael</creatorcontrib><description>Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.966</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>boundary value problems for parabolic systems ; Exact sciences and technology ; homogenization ; Mathematical analysis ; Mathematics ; multiscale ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; porous media ; reaction-diffusion equations ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2008-07, Vol.31 (11), p.1257-1282</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</citedby><cites>FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.966$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.966$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20516895$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peter, Malte A.</creatorcontrib><creatorcontrib>Böhm, Michael</creatorcontrib><title>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>boundary value problems for parabolic systems</subject><subject>Exact sciences and technology</subject><subject>homogenization</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>multiscale</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>porous media</subject><subject>reaction-diffusion equations</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10E1v1DAQBmALgcRSEH8hF-CAUuz4Kz5WW2gRLXAA9WgNznjXkNiLnRUtvx5HqXrjZI38zKvRS8hLRk8Zpd27aYJTo9QjsmHUmJYJrR6TDWWatqJj4il5VspPSmnPWLchu_PgPWaMc-P2KTgsTfJNcTCGuGtCbPZpSjuM4S_MIcXlc6gbx7IMEIdKZsweXICxwVu3h7jDZQ-aQ8rpWJoJh3CcnpMnHsaCL-7fE_L9w_tv28v26svFx-3ZVeuENKqVftAaVM-91APKweHAjVHguGCMm05BR38wqANKoD0Kqh1S6HvG0XDa8xPyes095PT7iGW2UygOxxEi1mss51KwTokK36zQ5VRKRm8POUyQ7yyjdinS1iJtLbLKV_eRsPTiM0QXygPvqGSqN7K6t6v7E0a8-1-cvb4-W1PbVYcy4-2DhvzLKs21tDefL-ynyxthtl-1Pef_AJsZkG0</recordid><startdate>20080725</startdate><enddate>20080725</enddate><creator>Peter, Malte A.</creator><creator>Böhm, Michael</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080725</creationdate><title>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</title><author>Peter, Malte A. ; Böhm, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>boundary value problems for parabolic systems</topic><topic>Exact sciences and technology</topic><topic>homogenization</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>multiscale</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>porous media</topic><topic>reaction-diffusion equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, Malte A.</creatorcontrib><creatorcontrib>Böhm, Michael</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter, Malte A.</au><au>Böhm, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2008-07-25</date><risdate>2008</risdate><volume>31</volume><issue>11</issue><spage>1257</spage><epage>1282</epage><pages>1257-1282</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.966</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2008-07, Vol.31 (11), p.1257-1282 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_33541264 |
source | Wiley Journals |
subjects | boundary value problems for parabolic systems Exact sciences and technology homogenization Mathematical analysis Mathematics multiscale Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems porous media reaction-diffusion equations Sciences and techniques of general use |
title | Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20choices%20of%20scaling%20in%20homogenization%20of%20diffusion%20and%20interfacial%20exchange%20in%20a%20porous%20medium&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Peter,%20Malte%20A.&rft.date=2008-07-25&rft.volume=31&rft.issue=11&rft.spage=1257&rft.epage=1282&rft.pages=1257-1282&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.966&rft_dat=%3Cproquest_cross%3E33541264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33541264&rft_id=info:pmid/&rfr_iscdi=true |