Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium

Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2008-07, Vol.31 (11), p.1257-1282
Hauptverfasser: Peter, Malte A., Böhm, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1282
container_issue 11
container_start_page 1257
container_title Mathematical methods in the applied sciences
container_volume 31
creator Peter, Malte A.
Böhm, Michael
description Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.966
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33541264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33541264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</originalsourceid><addsrcrecordid>eNp10E1v1DAQBmALgcRSEH8hF-CAUuz4Kz5WW2gRLXAA9WgNznjXkNiLnRUtvx5HqXrjZI38zKvRS8hLRk8Zpd27aYJTo9QjsmHUmJYJrR6TDWWatqJj4il5VspPSmnPWLchu_PgPWaMc-P2KTgsTfJNcTCGuGtCbPZpSjuM4S_MIcXlc6gbx7IMEIdKZsweXICxwVu3h7jDZQ-aQ8rpWJoJh3CcnpMnHsaCL-7fE_L9w_tv28v26svFx-3ZVeuENKqVftAaVM-91APKweHAjVHguGCMm05BR38wqANKoD0Kqh1S6HvG0XDa8xPyes095PT7iGW2UygOxxEi1mss51KwTokK36zQ5VRKRm8POUyQ7yyjdinS1iJtLbLKV_eRsPTiM0QXygPvqGSqN7K6t6v7E0a8-1-cvb4-W1PbVYcy4-2DhvzLKs21tDefL-ynyxthtl-1Pef_AJsZkG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33541264</pqid></control><display><type>article</type><title>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</title><source>Wiley Journals</source><creator>Peter, Malte A. ; Böhm, Michael</creator><creatorcontrib>Peter, Malte A. ; Böhm, Michael</creatorcontrib><description>Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.966</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>boundary value problems for parabolic systems ; Exact sciences and technology ; homogenization ; Mathematical analysis ; Mathematics ; multiscale ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; porous media ; reaction-diffusion equations ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2008-07, Vol.31 (11), p.1257-1282</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</citedby><cites>FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.966$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.966$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20516895$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Peter, Malte A.</creatorcontrib><creatorcontrib>Böhm, Michael</creatorcontrib><title>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>boundary value problems for parabolic systems</subject><subject>Exact sciences and technology</subject><subject>homogenization</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>multiscale</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>porous media</subject><subject>reaction-diffusion equations</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10E1v1DAQBmALgcRSEH8hF-CAUuz4Kz5WW2gRLXAA9WgNznjXkNiLnRUtvx5HqXrjZI38zKvRS8hLRk8Zpd27aYJTo9QjsmHUmJYJrR6TDWWatqJj4il5VspPSmnPWLchu_PgPWaMc-P2KTgsTfJNcTCGuGtCbPZpSjuM4S_MIcXlc6gbx7IMEIdKZsweXICxwVu3h7jDZQ-aQ8rpWJoJh3CcnpMnHsaCL-7fE_L9w_tv28v26svFx-3ZVeuENKqVftAaVM-91APKweHAjVHguGCMm05BR38wqANKoD0Kqh1S6HvG0XDa8xPyes095PT7iGW2UygOxxEi1mss51KwTokK36zQ5VRKRm8POUyQ7yyjdinS1iJtLbLKV_eRsPTiM0QXygPvqGSqN7K6t6v7E0a8-1-cvb4-W1PbVYcy4-2DhvzLKs21tDefL-ynyxthtl-1Pef_AJsZkG0</recordid><startdate>20080725</startdate><enddate>20080725</enddate><creator>Peter, Malte A.</creator><creator>Böhm, Michael</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20080725</creationdate><title>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</title><author>Peter, Malte A. ; Böhm, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4596-5fd77a683f57de5dced3996ac34113926a20b1a411e5a08e407ce0a8813e93083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>boundary value problems for parabolic systems</topic><topic>Exact sciences and technology</topic><topic>homogenization</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>multiscale</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>porous media</topic><topic>reaction-diffusion equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peter, Malte A.</creatorcontrib><creatorcontrib>Böhm, Michael</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peter, Malte A.</au><au>Böhm, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2008-07-25</date><risdate>2008</risdate><volume>31</volume><issue>11</issue><spage>1257</spage><epage>1282</epage><pages>1257-1282</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Several choices of scaling are investigated for a coupled system of parabolic partial differential equations in a two‐phase medium at the microscopic scale. This system may be regarded as modelling a reaction–diffusion problem, the Stokes problem of single‐phase flow of a slightly compressible fluid or as a heat conduction problem (with or without interfacial resistance), for example. It is shown that, starting with the same problem on the microscopic scale, different choices of scaling of the diffusion coefficients (resp. permeability or conductivity) and the interfacial‐exchange coefficient lead to different types of macroscopic systems of equations. The characterization of the limit problems in terms of the scaling parameters constitutes a modelling tool because it allows to determine the right type of limit problem. New macroscopic models, not previously dealt with, arise and, for some scalings, classical macroscopic models are recovered. Using the method of two‐scale convergence, a unified approach yielding rigorous proofs is given covering a very broad class of different scalings. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.966</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2008-07, Vol.31 (11), p.1257-1282
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_33541264
source Wiley Journals
subjects boundary value problems for parabolic systems
Exact sciences and technology
homogenization
Mathematical analysis
Mathematics
multiscale
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
porous media
reaction-diffusion equations
Sciences and techniques of general use
title Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20choices%20of%20scaling%20in%20homogenization%20of%20diffusion%20and%20interfacial%20exchange%20in%20a%20porous%20medium&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Peter,%20Malte%20A.&rft.date=2008-07-25&rft.volume=31&rft.issue=11&rft.spage=1257&rft.epage=1282&rft.pages=1257-1282&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.966&rft_dat=%3Cproquest_cross%3E33541264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33541264&rft_id=info:pmid/&rfr_iscdi=true