Spatial Association between Speciated Fine Particles and Mortality

Particulate matter (PM) has been linked to a range of serious cardiovascular and respiratory health problems, including premature mortality. The main objective of our research is to quantify uncertainties about the impacts of fine PM exposure on mortality. We develop a multivariate spatial regressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2006-09, Vol.62 (3), p.855-863
Hauptverfasser: Fuentes, Montserrat, Song, Hae‐Ryoung, Ghosh, Sujit K, Holland, David M, Davis, Jerry M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue 3
container_start_page 855
container_title Biometrics
container_volume 62
creator Fuentes, Montserrat
Song, Hae‐Ryoung
Ghosh, Sujit K
Holland, David M
Davis, Jerry M
description Particulate matter (PM) has been linked to a range of serious cardiovascular and respiratory health problems, including premature mortality. The main objective of our research is to quantify uncertainties about the impacts of fine PM exposure on mortality. We develop a multivariate spatial regression model for the estimation of the risk of mortality associated with fine PM and its components across all counties in the conterminous United States. We characterize different sources of uncertainty in the data and model the spatial structure of the mortality data and the speciated fine PM. We consider a flexible Bayesian hierarchical model for a space‐time series of counts (mortality) by constructing a likelihood‐based version of a generalized Poisson regression model that combines methods for point‐level misaligned data and change of support regression. Our results seem to suggest an increase by a factor of two in the risk of mortality due to fine particles with respect to coarse particles. Our study also shows that in the Western United States, the nitrate and crustal components of the speciated fine PM seem to have more impact on mortality than the other components. On the other hand, in the Eastern United States, sulfate and ammonium explain most of the fine PM effect.
doi_str_mv 10.1111/j.1541-0420.2006.00526.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_33525126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4124596</jstor_id><sourcerecordid>4124596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5746-2b459d65246b3ac3aaec54c9688fc81b23e97ef11584fefae3260d0a4ebd01523</originalsourceid><addsrcrecordid>eNqNkktv1DAURi0EokPhHyCIWLBL8DvJgkVb0VLRUqRpBermyklukEMmHuyMOvPvcZrRILHCGz--c6_sIxOSMJqxOD50GVOSpVRymnFKdUap4jrbPiGLQ_CULGiMUiHZjyPyIoQubktF-XNyxHRZSMHLBTldrs1oTZ-chOBqG9duSCocHxCHZLnG6Qib5NwOmHwzfrR1jyExQ5NcOz-a3o67l-RZa_qAr_bzMbk7_3R79jm9urm4PDu5SmuVS53ySqqy0YpLXQlTC2OwVrIudVG0dcEqLrDMsWVMFbLF1qDgmjbUSKwayhQXx-T93Hft3e8NhhFWNtTY92ZAtwkghOKKcR3Bd_-Andv4Id4NOBOFUFKqCBUzVHsXgscW1t6ujN8BozBJhg4mlzC5hEkyPEqGbSx9s--_qVbY_C3cW43Axxl4sD3u_rsxnF7eXKvHB7ye67swOn-ol4xHhVOczrENI24PsfG_QOciV_D96wVILe_LL_oW7iP_duZb48D89DbA3ZJHp9P_yCll4g8WeKsK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213835445</pqid></control><display><type>article</type><title>Spatial Association between Speciated Fine Particles and Mortality</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Fuentes, Montserrat ; Song, Hae‐Ryoung ; Ghosh, Sujit K ; Holland, David M ; Davis, Jerry M</creator><creatorcontrib>Fuentes, Montserrat ; Song, Hae‐Ryoung ; Ghosh, Sujit K ; Holland, David M ; Davis, Jerry M</creatorcontrib><description>Particulate matter (PM) has been linked to a range of serious cardiovascular and respiratory health problems, including premature mortality. The main objective of our research is to quantify uncertainties about the impacts of fine PM exposure on mortality. We develop a multivariate spatial regression model for the estimation of the risk of mortality associated with fine PM and its components across all counties in the conterminous United States. We characterize different sources of uncertainty in the data and model the spatial structure of the mortality data and the speciated fine PM. We consider a flexible Bayesian hierarchical model for a space‐time series of counts (mortality) by constructing a likelihood‐based version of a generalized Poisson regression model that combines methods for point‐level misaligned data and change of support regression. Our results seem to suggest an increase by a factor of two in the risk of mortality due to fine particles with respect to coarse particles. Our study also shows that in the Western United States, the nitrate and crustal components of the speciated fine PM seem to have more impact on mortality than the other components. On the other hand, in the Eastern United States, sulfate and ammonium explain most of the fine PM effect.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2006.00526.x</identifier><identifier>PMID: 16984329</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Air Pollutants - toxicity ; air pollution ; Airborne particulates ; Ambient air pollution ; Ammonia ; ammonium nitrogen ; Bayes Theorem ; Bayesian analysis ; Bayesian hierarchical models ; Bayesian theory ; Biometrics ; Biometry ; Cardiovascular Diseases - etiology ; Cardiovascular Diseases - mortality ; Conditional autoregressive models ; Environmental agencies ; Environmental epidemiology ; Geographic regions ; Health risk assessment ; Human exposure ; Humans ; Modeling ; Models, Biological ; Models, Statistical ; Mortality ; nitrate nitrogen ; Nitrates ; Ozone ; Particle Size ; Particulate matter ; particulates ; Poisson distribution ; Quantum statistics ; Regression Analysis ; Respiratory Tract Diseases - etiology ; Respiratory Tract Diseases - mortality ; Risk ; risk estimate ; Spatial models ; Spatial statistics ; sulfates ; Sulfur ; Time series ; uncertainty ; United States - epidemiology ; Weather</subject><ispartof>Biometrics, 2006-09, Vol.62 (3), p.855-863</ispartof><rights>Copyright 2006 The International Biometric Society</rights><rights>2006, The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5746-2b459d65246b3ac3aaec54c9688fc81b23e97ef11584fefae3260d0a4ebd01523</citedby><cites>FETCH-LOGICAL-c5746-2b459d65246b3ac3aaec54c9688fc81b23e97ef11584fefae3260d0a4ebd01523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4124596$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4124596$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27903,27904,45552,45553,57994,57998,58227,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16984329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuentes, Montserrat</creatorcontrib><creatorcontrib>Song, Hae‐Ryoung</creatorcontrib><creatorcontrib>Ghosh, Sujit K</creatorcontrib><creatorcontrib>Holland, David M</creatorcontrib><creatorcontrib>Davis, Jerry M</creatorcontrib><title>Spatial Association between Speciated Fine Particles and Mortality</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Particulate matter (PM) has been linked to a range of serious cardiovascular and respiratory health problems, including premature mortality. The main objective of our research is to quantify uncertainties about the impacts of fine PM exposure on mortality. We develop a multivariate spatial regression model for the estimation of the risk of mortality associated with fine PM and its components across all counties in the conterminous United States. We characterize different sources of uncertainty in the data and model the spatial structure of the mortality data and the speciated fine PM. We consider a flexible Bayesian hierarchical model for a space‐time series of counts (mortality) by constructing a likelihood‐based version of a generalized Poisson regression model that combines methods for point‐level misaligned data and change of support regression. Our results seem to suggest an increase by a factor of two in the risk of mortality due to fine particles with respect to coarse particles. Our study also shows that in the Western United States, the nitrate and crustal components of the speciated fine PM seem to have more impact on mortality than the other components. On the other hand, in the Eastern United States, sulfate and ammonium explain most of the fine PM effect.</description><subject>Air Pollutants - toxicity</subject><subject>air pollution</subject><subject>Airborne particulates</subject><subject>Ambient air pollution</subject><subject>Ammonia</subject><subject>ammonium nitrogen</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian hierarchical models</subject><subject>Bayesian theory</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Cardiovascular Diseases - etiology</subject><subject>Cardiovascular Diseases - mortality</subject><subject>Conditional autoregressive models</subject><subject>Environmental agencies</subject><subject>Environmental epidemiology</subject><subject>Geographic regions</subject><subject>Health risk assessment</subject><subject>Human exposure</subject><subject>Humans</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>nitrate nitrogen</subject><subject>Nitrates</subject><subject>Ozone</subject><subject>Particle Size</subject><subject>Particulate matter</subject><subject>particulates</subject><subject>Poisson distribution</subject><subject>Quantum statistics</subject><subject>Regression Analysis</subject><subject>Respiratory Tract Diseases - etiology</subject><subject>Respiratory Tract Diseases - mortality</subject><subject>Risk</subject><subject>risk estimate</subject><subject>Spatial models</subject><subject>Spatial statistics</subject><subject>sulfates</subject><subject>Sulfur</subject><subject>Time series</subject><subject>uncertainty</subject><subject>United States - epidemiology</subject><subject>Weather</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAURi0EokPhHyCIWLBL8DvJgkVb0VLRUqRpBermyklukEMmHuyMOvPvcZrRILHCGz--c6_sIxOSMJqxOD50GVOSpVRymnFKdUap4jrbPiGLQ_CULGiMUiHZjyPyIoQubktF-XNyxHRZSMHLBTldrs1oTZ-chOBqG9duSCocHxCHZLnG6Qib5NwOmHwzfrR1jyExQ5NcOz-a3o67l-RZa_qAr_bzMbk7_3R79jm9urm4PDu5SmuVS53ySqqy0YpLXQlTC2OwVrIudVG0dcEqLrDMsWVMFbLF1qDgmjbUSKwayhQXx-T93Hft3e8NhhFWNtTY92ZAtwkghOKKcR3Bd_-Andv4Id4NOBOFUFKqCBUzVHsXgscW1t6ujN8BozBJhg4mlzC5hEkyPEqGbSx9s--_qVbY_C3cW43Axxl4sD3u_rsxnF7eXKvHB7ye67swOn-ol4xHhVOczrENI24PsfG_QOciV_D96wVILe_LL_oW7iP_duZb48D89DbA3ZJHp9P_yCll4g8WeKsK</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Fuentes, Montserrat</creator><creator>Song, Hae‐Ryoung</creator><creator>Ghosh, Sujit K</creator><creator>Holland, David M</creator><creator>Davis, Jerry M</creator><general>Blackwell Publishing Inc</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200609</creationdate><title>Spatial Association between Speciated Fine Particles and Mortality</title><author>Fuentes, Montserrat ; Song, Hae‐Ryoung ; Ghosh, Sujit K ; Holland, David M ; Davis, Jerry M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5746-2b459d65246b3ac3aaec54c9688fc81b23e97ef11584fefae3260d0a4ebd01523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Air Pollutants - toxicity</topic><topic>air pollution</topic><topic>Airborne particulates</topic><topic>Ambient air pollution</topic><topic>Ammonia</topic><topic>ammonium nitrogen</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian hierarchical models</topic><topic>Bayesian theory</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Cardiovascular Diseases - etiology</topic><topic>Cardiovascular Diseases - mortality</topic><topic>Conditional autoregressive models</topic><topic>Environmental agencies</topic><topic>Environmental epidemiology</topic><topic>Geographic regions</topic><topic>Health risk assessment</topic><topic>Human exposure</topic><topic>Humans</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>nitrate nitrogen</topic><topic>Nitrates</topic><topic>Ozone</topic><topic>Particle Size</topic><topic>Particulate matter</topic><topic>particulates</topic><topic>Poisson distribution</topic><topic>Quantum statistics</topic><topic>Regression Analysis</topic><topic>Respiratory Tract Diseases - etiology</topic><topic>Respiratory Tract Diseases - mortality</topic><topic>Risk</topic><topic>risk estimate</topic><topic>Spatial models</topic><topic>Spatial statistics</topic><topic>sulfates</topic><topic>Sulfur</topic><topic>Time series</topic><topic>uncertainty</topic><topic>United States - epidemiology</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuentes, Montserrat</creatorcontrib><creatorcontrib>Song, Hae‐Ryoung</creatorcontrib><creatorcontrib>Ghosh, Sujit K</creatorcontrib><creatorcontrib>Holland, David M</creatorcontrib><creatorcontrib>Davis, Jerry M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuentes, Montserrat</au><au>Song, Hae‐Ryoung</au><au>Ghosh, Sujit K</au><au>Holland, David M</au><au>Davis, Jerry M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Association between Speciated Fine Particles and Mortality</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2006-09</date><risdate>2006</risdate><volume>62</volume><issue>3</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Particulate matter (PM) has been linked to a range of serious cardiovascular and respiratory health problems, including premature mortality. The main objective of our research is to quantify uncertainties about the impacts of fine PM exposure on mortality. We develop a multivariate spatial regression model for the estimation of the risk of mortality associated with fine PM and its components across all counties in the conterminous United States. We characterize different sources of uncertainty in the data and model the spatial structure of the mortality data and the speciated fine PM. We consider a flexible Bayesian hierarchical model for a space‐time series of counts (mortality) by constructing a likelihood‐based version of a generalized Poisson regression model that combines methods for point‐level misaligned data and change of support regression. Our results seem to suggest an increase by a factor of two in the risk of mortality due to fine particles with respect to coarse particles. Our study also shows that in the Western United States, the nitrate and crustal components of the speciated fine PM seem to have more impact on mortality than the other components. On the other hand, in the Eastern United States, sulfate and ammonium explain most of the fine PM effect.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>16984329</pmid><doi>10.1111/j.1541-0420.2006.00526.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2006-09, Vol.62 (3), p.855-863
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_33525126
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics
subjects Air Pollutants - toxicity
air pollution
Airborne particulates
Ambient air pollution
Ammonia
ammonium nitrogen
Bayes Theorem
Bayesian analysis
Bayesian hierarchical models
Bayesian theory
Biometrics
Biometry
Cardiovascular Diseases - etiology
Cardiovascular Diseases - mortality
Conditional autoregressive models
Environmental agencies
Environmental epidemiology
Geographic regions
Health risk assessment
Human exposure
Humans
Modeling
Models, Biological
Models, Statistical
Mortality
nitrate nitrogen
Nitrates
Ozone
Particle Size
Particulate matter
particulates
Poisson distribution
Quantum statistics
Regression Analysis
Respiratory Tract Diseases - etiology
Respiratory Tract Diseases - mortality
Risk
risk estimate
Spatial models
Spatial statistics
sulfates
Sulfur
Time series
uncertainty
United States - epidemiology
Weather
title Spatial Association between Speciated Fine Particles and Mortality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Association%20between%20Speciated%20Fine%20Particles%20and%20Mortality&rft.jtitle=Biometrics&rft.au=Fuentes,%20Montserrat&rft.date=2006-09&rft.volume=62&rft.issue=3&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2006.00526.x&rft_dat=%3Cjstor_proqu%3E4124596%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213835445&rft_id=info:pmid/16984329&rft_jstor_id=4124596&rfr_iscdi=true