A soft computing approach to localization in wireless sensor networks
In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. I...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2009-05, Vol.36 (4), p.7552-7561 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7561 |
---|---|
container_issue | 4 |
container_start_page | 7552 |
container_title | Expert systems with applications |
container_volume | 36 |
creator | Yun, Sukhyun Lee, Jaehun Chung, Wooyong Kim, Euntai Kim, Soohan |
description | In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods. |
doi_str_mv | 10.1016/j.eswa.2008.09.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33507892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417408006830</els_id><sourcerecordid>33507892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5g8sSU820kdSyxVVT6kSiwwW47zAi5pHGyXCn49icrM9JZ7rt49hFwzyBmwxe02x3gwOQeoclA5LIoTMmOVFNlCKnFKZqBKmRVMFufkIsYtAJMAckbWSxp9m6j1u2GfXP9GzTAEb-w7TZ523prO_ZjkfE9dTw8uYIcx0oh99IH2mA4-fMRLctaaLuLV352T1_v1y-ox2zw_PK2Wm8wKwVJWyZZXDQiOpWxrWxelkGgMFsoILpsaGs5YVXPRtDUIg6JulCoNIlOlkoaLObk59o4vfu4xJr1z0WLXmR79PmohSpCVmoL8GLTBxxiw1UNwOxO-NQM9GdNbPRnTkzENSo_GRujuCOE44cth0NE67C0242ybdOPdf_gvzJN2Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33507892</pqid></control><display><type>article</type><title>A soft computing approach to localization in wireless sensor networks</title><source>Elsevier ScienceDirect Journals</source><creator>Yun, Sukhyun ; Lee, Jaehun ; Chung, Wooyong ; Kim, Euntai ; Kim, Soohan</creator><creatorcontrib>Yun, Sukhyun ; Lee, Jaehun ; Chung, Wooyong ; Kim, Euntai ; Kim, Soohan</creatorcontrib><description>In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2008.09.064</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fuzzy logic system ; Genetic algorithm ; Localization ; Neural network ; Wireless sensor networks</subject><ispartof>Expert systems with applications, 2009-05, Vol.36 (4), p.7552-7561</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</citedby><cites>FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417408006830$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yun, Sukhyun</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Chung, Wooyong</creatorcontrib><creatorcontrib>Kim, Euntai</creatorcontrib><creatorcontrib>Kim, Soohan</creatorcontrib><title>A soft computing approach to localization in wireless sensor networks</title><title>Expert systems with applications</title><description>In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods.</description><subject>Fuzzy logic system</subject><subject>Genetic algorithm</subject><subject>Localization</subject><subject>Neural network</subject><subject>Wireless sensor networks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5g8sSU820kdSyxVVT6kSiwwW47zAi5pHGyXCn49icrM9JZ7rt49hFwzyBmwxe02x3gwOQeoclA5LIoTMmOVFNlCKnFKZqBKmRVMFufkIsYtAJMAckbWSxp9m6j1u2GfXP9GzTAEb-w7TZ523prO_ZjkfE9dTw8uYIcx0oh99IH2mA4-fMRLctaaLuLV352T1_v1y-ox2zw_PK2Wm8wKwVJWyZZXDQiOpWxrWxelkGgMFsoILpsaGs5YVXPRtDUIg6JulCoNIlOlkoaLObk59o4vfu4xJr1z0WLXmR79PmohSpCVmoL8GLTBxxiw1UNwOxO-NQM9GdNbPRnTkzENSo_GRujuCOE44cth0NE67C0242ybdOPdf_gvzJN2Bg</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Yun, Sukhyun</creator><creator>Lee, Jaehun</creator><creator>Chung, Wooyong</creator><creator>Kim, Euntai</creator><creator>Kim, Soohan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200905</creationdate><title>A soft computing approach to localization in wireless sensor networks</title><author>Yun, Sukhyun ; Lee, Jaehun ; Chung, Wooyong ; Kim, Euntai ; Kim, Soohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Fuzzy logic system</topic><topic>Genetic algorithm</topic><topic>Localization</topic><topic>Neural network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Sukhyun</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Chung, Wooyong</creatorcontrib><creatorcontrib>Kim, Euntai</creatorcontrib><creatorcontrib>Kim, Soohan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Sukhyun</au><au>Lee, Jaehun</au><au>Chung, Wooyong</au><au>Kim, Euntai</au><au>Kim, Soohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A soft computing approach to localization in wireless sensor networks</atitle><jtitle>Expert systems with applications</jtitle><date>2009-05</date><risdate>2009</risdate><volume>36</volume><issue>4</issue><spage>7552</spage><epage>7561</epage><pages>7552-7561</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2008.09.064</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2009-05, Vol.36 (4), p.7552-7561 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_33507892 |
source | Elsevier ScienceDirect Journals |
subjects | Fuzzy logic system Genetic algorithm Localization Neural network Wireless sensor networks |
title | A soft computing approach to localization in wireless sensor networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20soft%20computing%20approach%20to%20localization%20in%20wireless%20sensor%20networks&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Yun,%20Sukhyun&rft.date=2009-05&rft.volume=36&rft.issue=4&rft.spage=7552&rft.epage=7561&rft.pages=7552-7561&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2008.09.064&rft_dat=%3Cproquest_cross%3E33507892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33507892&rft_id=info:pmid/&rft_els_id=S0957417408006830&rfr_iscdi=true |