A soft computing approach to localization in wireless sensor networks

In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2009-05, Vol.36 (4), p.7552-7561
Hauptverfasser: Yun, Sukhyun, Lee, Jaehun, Chung, Wooyong, Kim, Euntai, Kim, Soohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7561
container_issue 4
container_start_page 7552
container_title Expert systems with applications
container_volume 36
creator Yun, Sukhyun
Lee, Jaehun
Chung, Wooyong
Kim, Euntai
Kim, Soohan
description In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods.
doi_str_mv 10.1016/j.eswa.2008.09.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33507892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417408006830</els_id><sourcerecordid>33507892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5g8sSU820kdSyxVVT6kSiwwW47zAi5pHGyXCn49icrM9JZ7rt49hFwzyBmwxe02x3gwOQeoclA5LIoTMmOVFNlCKnFKZqBKmRVMFufkIsYtAJMAckbWSxp9m6j1u2GfXP9GzTAEb-w7TZ523prO_ZjkfE9dTw8uYIcx0oh99IH2mA4-fMRLctaaLuLV352T1_v1y-ox2zw_PK2Wm8wKwVJWyZZXDQiOpWxrWxelkGgMFsoILpsaGs5YVXPRtDUIg6JulCoNIlOlkoaLObk59o4vfu4xJr1z0WLXmR79PmohSpCVmoL8GLTBxxiw1UNwOxO-NQM9GdNbPRnTkzENSo_GRujuCOE44cth0NE67C0242ybdOPdf_gvzJN2Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33507892</pqid></control><display><type>article</type><title>A soft computing approach to localization in wireless sensor networks</title><source>Elsevier ScienceDirect Journals</source><creator>Yun, Sukhyun ; Lee, Jaehun ; Chung, Wooyong ; Kim, Euntai ; Kim, Soohan</creator><creatorcontrib>Yun, Sukhyun ; Lee, Jaehun ; Chung, Wooyong ; Kim, Euntai ; Kim, Soohan</creatorcontrib><description>In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2008.09.064</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fuzzy logic system ; Genetic algorithm ; Localization ; Neural network ; Wireless sensor networks</subject><ispartof>Expert systems with applications, 2009-05, Vol.36 (4), p.7552-7561</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</citedby><cites>FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417408006830$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yun, Sukhyun</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Chung, Wooyong</creatorcontrib><creatorcontrib>Kim, Euntai</creatorcontrib><creatorcontrib>Kim, Soohan</creatorcontrib><title>A soft computing approach to localization in wireless sensor networks</title><title>Expert systems with applications</title><description>In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods.</description><subject>Fuzzy logic system</subject><subject>Genetic algorithm</subject><subject>Localization</subject><subject>Neural network</subject><subject>Wireless sensor networks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5g8sSU820kdSyxVVT6kSiwwW47zAi5pHGyXCn49icrM9JZ7rt49hFwzyBmwxe02x3gwOQeoclA5LIoTMmOVFNlCKnFKZqBKmRVMFufkIsYtAJMAckbWSxp9m6j1u2GfXP9GzTAEb-w7TZ523prO_ZjkfE9dTw8uYIcx0oh99IH2mA4-fMRLctaaLuLV352T1_v1y-ox2zw_PK2Wm8wKwVJWyZZXDQiOpWxrWxelkGgMFsoILpsaGs5YVXPRtDUIg6JulCoNIlOlkoaLObk59o4vfu4xJr1z0WLXmR79PmohSpCVmoL8GLTBxxiw1UNwOxO-NQM9GdNbPRnTkzENSo_GRujuCOE44cth0NE67C0242ybdOPdf_gvzJN2Bg</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Yun, Sukhyun</creator><creator>Lee, Jaehun</creator><creator>Chung, Wooyong</creator><creator>Kim, Euntai</creator><creator>Kim, Soohan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200905</creationdate><title>A soft computing approach to localization in wireless sensor networks</title><author>Yun, Sukhyun ; Lee, Jaehun ; Chung, Wooyong ; Kim, Euntai ; Kim, Soohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-87f28d032e57fbcb4537eaae49a327db0d2118b23dfb03ae3bd995aee19597a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Fuzzy logic system</topic><topic>Genetic algorithm</topic><topic>Localization</topic><topic>Neural network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Sukhyun</creatorcontrib><creatorcontrib>Lee, Jaehun</creatorcontrib><creatorcontrib>Chung, Wooyong</creatorcontrib><creatorcontrib>Kim, Euntai</creatorcontrib><creatorcontrib>Kim, Soohan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Sukhyun</au><au>Lee, Jaehun</au><au>Chung, Wooyong</au><au>Kim, Euntai</au><au>Kim, Soohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A soft computing approach to localization in wireless sensor networks</atitle><jtitle>Expert systems with applications</jtitle><date>2009-05</date><risdate>2009</risdate><volume>36</volume><issue>4</issue><spage>7552</spage><epage>7561</epage><pages>7552-7561</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>In this paper, we propose two intelligent localization schemes for wireless sensor networks (WSNs). The two schemes introduced in this paper exhibit range-free localization, which utilize the received signal strength (RSS) from the anchor nodes. Soft computing plays a crucial role in both schemes. In the first scheme, we consider the edge weight of each anchor node separately and combine them to compute the location of sensor nodes. The edge weights are modeled by the fuzzy logic system (FLS) and optimized by the genetic algorithm (GA). In the second scheme, we consider the localization as a single problem and approximate the entire sensor location mapping from the anchor node signals by a neural network (NN). The simulation and experimental results demonstrate the effectiveness of the proposed schemes by comparing them with the previous methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2008.09.064</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2009-05, Vol.36 (4), p.7552-7561
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_33507892
source Elsevier ScienceDirect Journals
subjects Fuzzy logic system
Genetic algorithm
Localization
Neural network
Wireless sensor networks
title A soft computing approach to localization in wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20soft%20computing%20approach%20to%20localization%20in%20wireless%20sensor%20networks&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Yun,%20Sukhyun&rft.date=2009-05&rft.volume=36&rft.issue=4&rft.spage=7552&rft.epage=7561&rft.pages=7552-7561&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2008.09.064&rft_dat=%3Cproquest_cross%3E33507892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33507892&rft_id=info:pmid/&rft_els_id=S0957417408006830&rfr_iscdi=true