Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy
The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550 °C and strain rate range of 0.0003–10 s −1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, de...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2009-02, Vol.502 (1), p.25-31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 502 |
creator | Prasad, Y.V.R.K. Rao, K.P. Hort, N. Kainer, K.U. |
description | The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550
°C and strain rate range of 0.0003–10
s
−1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500
°C, with one in the lower strain rate range (0.0003–0.003
s
−1) and the other in the higher strain rate range (1–10
s
−1), the optimum temperature being 400
°C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168
kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3
s
−1), unusual grain size changes have occurred which may render microstructural control difficult. |
doi_str_mv | 10.1016/j.msea.2008.10.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33456096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308012410</els_id><sourcerecordid>33456096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6y8gV2CHbtOI7FBFS-piAWwtqb2BFySuNgujx3_wB_yJSRqxZLNjDRz7x3NIeSIs5wzrk4XeRsR8oKxST_ImeRbZMQnpchkJdQ2GbGq4NmYVWKX7MW4YIxxycYjYu6WybWrli4hQIsJQ6TQWRogYWZ8l4JvGtc90RbNM3QutpHWPtBnn-i7Dy_DytcUP1JYWbT09unn61vcd33lU6DQNP7zgOzU0EQ83PR98nh58TC9zmZ3VzfT81lmhOIpA1vKubQAE4UcTTmWaBRYDqZWUpWVwKqo54oLY60yqrBijhygkBaVtVCIfXKyzl0G_7rCmHTrosGmgQ79Kmoh5FixSvXCYi00wccYsNbL4FoIn5ozPfDUCz3w1APPYdbz7E3Hm3SIBpo6QGdc_HMWPU-hStnrztY67F99cxh0NA47g9YFNElb7_478wvSyo_G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33456096</pqid></control><display><type>article</type><title>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Prasad, Y.V.R.K. ; Rao, K.P. ; Hort, N. ; Kainer, K.U.</creator><creatorcontrib>Prasad, Y.V.R.K. ; Rao, K.P. ; Hort, N. ; Kainer, K.U.</creatorcontrib><description>The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550
°C and strain rate range of 0.0003–10
s
−1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500
°C, with one in the lower strain rate range (0.0003–0.003
s
−1) and the other in the higher strain rate range (1–10
s
−1), the optimum temperature being 400
°C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168
kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3
s
−1), unusual grain size changes have occurred which may render microstructural control difficult.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2008.10.041</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Dynamic recrystallization ; Elasticity. Plasticity ; Exact sciences and technology ; Kinetic analysis ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Mg–Sn–Ca alloy ; Physics ; Processing map ; Treatment of materials and its effects on microstructure and properties ; Workability optimization</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.502 (1), p.25-31</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</citedby><cites>FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2008.10.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21403674$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasad, Y.V.R.K.</creatorcontrib><creatorcontrib>Rao, K.P.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Kainer, K.U.</creatorcontrib><title>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550
°C and strain rate range of 0.0003–10
s
−1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500
°C, with one in the lower strain rate range (0.0003–0.003
s
−1) and the other in the higher strain rate range (1–10
s
−1), the optimum temperature being 400
°C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168
kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3
s
−1), unusual grain size changes have occurred which may render microstructural control difficult.</description><subject>Applied sciences</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dynamic recrystallization</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Kinetic analysis</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Mg–Sn–Ca alloy</subject><subject>Physics</subject><subject>Processing map</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><subject>Workability optimization</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6y8gV2CHbtOI7FBFS-piAWwtqb2BFySuNgujx3_wB_yJSRqxZLNjDRz7x3NIeSIs5wzrk4XeRsR8oKxST_ImeRbZMQnpchkJdQ2GbGq4NmYVWKX7MW4YIxxycYjYu6WybWrli4hQIsJQ6TQWRogYWZ8l4JvGtc90RbNM3QutpHWPtBnn-i7Dy_DytcUP1JYWbT09unn61vcd33lU6DQNP7zgOzU0EQ83PR98nh58TC9zmZ3VzfT81lmhOIpA1vKubQAE4UcTTmWaBRYDqZWUpWVwKqo54oLY60yqrBijhygkBaVtVCIfXKyzl0G_7rCmHTrosGmgQ79Kmoh5FixSvXCYi00wccYsNbL4FoIn5ozPfDUCz3w1APPYdbz7E3Hm3SIBpo6QGdc_HMWPU-hStnrztY67F99cxh0NA47g9YFNElb7_478wvSyo_G</recordid><startdate>20090225</startdate><enddate>20090225</enddate><creator>Prasad, Y.V.R.K.</creator><creator>Rao, K.P.</creator><creator>Hort, N.</creator><creator>Kainer, K.U.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090225</creationdate><title>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</title><author>Prasad, Y.V.R.K. ; Rao, K.P. ; Hort, N. ; Kainer, K.U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dynamic recrystallization</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Kinetic analysis</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Mg–Sn–Ca alloy</topic><topic>Physics</topic><topic>Processing map</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><topic>Workability optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Y.V.R.K.</creatorcontrib><creatorcontrib>Rao, K.P.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Kainer, K.U.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Y.V.R.K.</au><au>Rao, K.P.</au><au>Hort, N.</au><au>Kainer, K.U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2009-02-25</date><risdate>2009</risdate><volume>502</volume><issue>1</issue><spage>25</spage><epage>31</epage><pages>25-31</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550
°C and strain rate range of 0.0003–10
s
−1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500
°C, with one in the lower strain rate range (0.0003–0.003
s
−1) and the other in the higher strain rate range (1–10
s
−1), the optimum temperature being 400
°C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168
kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3
s
−1), unusual grain size changes have occurred which may render microstructural control difficult.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2008.10.041</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.502 (1), p.25-31 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_33456096 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Cold working, work hardening annealing, quenching, tempering, recovery, and recrystallization textures Cross-disciplinary physics: materials science rheology Dynamic recrystallization Elasticity. Plasticity Exact sciences and technology Kinetic analysis Materials science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Mg–Sn–Ca alloy Physics Processing map Treatment of materials and its effects on microstructure and properties Workability optimization |
title | Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20parameters%20and%20rate-controlling%20mechanisms%20for%20hot%20working%20of%20extruded%20Mg%E2%80%933Sn%E2%80%931Ca%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Prasad,%20Y.V.R.K.&rft.date=2009-02-25&rft.volume=502&rft.issue=1&rft.spage=25&rft.epage=31&rft.pages=25-31&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2008.10.041&rft_dat=%3Cproquest_cross%3E33456096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33456096&rft_id=info:pmid/&rft_els_id=S0921509308012410&rfr_iscdi=true |