Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy

The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550 °C and strain rate range of 0.0003–10 s −1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2009-02, Vol.502 (1), p.25-31
Hauptverfasser: Prasad, Y.V.R.K., Rao, K.P., Hort, N., Kainer, K.U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 25
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 502
creator Prasad, Y.V.R.K.
Rao, K.P.
Hort, N.
Kainer, K.U.
description The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550 °C and strain rate range of 0.0003–10 s −1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500 °C, with one in the lower strain rate range (0.0003–0.003 s −1) and the other in the higher strain rate range (1–10 s −1), the optimum temperature being 400 °C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168 kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3 s −1), unusual grain size changes have occurred which may render microstructural control difficult.
doi_str_mv 10.1016/j.msea.2008.10.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33456096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509308012410</els_id><sourcerecordid>33456096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6y8gV2CHbtOI7FBFS-piAWwtqb2BFySuNgujx3_wB_yJSRqxZLNjDRz7x3NIeSIs5wzrk4XeRsR8oKxST_ImeRbZMQnpchkJdQ2GbGq4NmYVWKX7MW4YIxxycYjYu6WybWrli4hQIsJQ6TQWRogYWZ8l4JvGtc90RbNM3QutpHWPtBnn-i7Dy_DytcUP1JYWbT09unn61vcd33lU6DQNP7zgOzU0EQ83PR98nh58TC9zmZ3VzfT81lmhOIpA1vKubQAE4UcTTmWaBRYDqZWUpWVwKqo54oLY60yqrBijhygkBaVtVCIfXKyzl0G_7rCmHTrosGmgQ79Kmoh5FixSvXCYi00wccYsNbL4FoIn5ozPfDUCz3w1APPYdbz7E3Hm3SIBpo6QGdc_HMWPU-hStnrztY67F99cxh0NA47g9YFNElb7_478wvSyo_G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33456096</pqid></control><display><type>article</type><title>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Prasad, Y.V.R.K. ; Rao, K.P. ; Hort, N. ; Kainer, K.U.</creator><creatorcontrib>Prasad, Y.V.R.K. ; Rao, K.P. ; Hort, N. ; Kainer, K.U.</creatorcontrib><description>The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550 °C and strain rate range of 0.0003–10 s −1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500 °C, with one in the lower strain rate range (0.0003–0.003 s −1) and the other in the higher strain rate range (1–10 s −1), the optimum temperature being 400 °C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168 kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3 s −1), unusual grain size changes have occurred which may render microstructural control difficult.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2008.10.041</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures ; Cross-disciplinary physics: materials science; rheology ; Dynamic recrystallization ; Elasticity. Plasticity ; Exact sciences and technology ; Kinetic analysis ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Mg–Sn–Ca alloy ; Physics ; Processing map ; Treatment of materials and its effects on microstructure and properties ; Workability optimization</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.502 (1), p.25-31</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</citedby><cites>FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2008.10.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21403674$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasad, Y.V.R.K.</creatorcontrib><creatorcontrib>Rao, K.P.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Kainer, K.U.</creatorcontrib><title>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550 °C and strain rate range of 0.0003–10 s −1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500 °C, with one in the lower strain rate range (0.0003–0.003 s −1) and the other in the higher strain rate range (1–10 s −1), the optimum temperature being 400 °C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168 kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3 s −1), unusual grain size changes have occurred which may render microstructural control difficult.</description><subject>Applied sciences</subject><subject>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dynamic recrystallization</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Kinetic analysis</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Mg–Sn–Ca alloy</subject><subject>Physics</subject><subject>Processing map</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><subject>Workability optimization</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6y8gV2CHbtOI7FBFS-piAWwtqb2BFySuNgujx3_wB_yJSRqxZLNjDRz7x3NIeSIs5wzrk4XeRsR8oKxST_ImeRbZMQnpchkJdQ2GbGq4NmYVWKX7MW4YIxxycYjYu6WybWrli4hQIsJQ6TQWRogYWZ8l4JvGtc90RbNM3QutpHWPtBnn-i7Dy_DytcUP1JYWbT09unn61vcd33lU6DQNP7zgOzU0EQ83PR98nh58TC9zmZ3VzfT81lmhOIpA1vKubQAE4UcTTmWaBRYDqZWUpWVwKqo54oLY60yqrBijhygkBaVtVCIfXKyzl0G_7rCmHTrosGmgQ79Kmoh5FixSvXCYi00wccYsNbL4FoIn5ozPfDUCz3w1APPYdbz7E3Hm3SIBpo6QGdc_HMWPU-hStnrztY67F99cxh0NA47g9YFNElb7_478wvSyo_G</recordid><startdate>20090225</startdate><enddate>20090225</enddate><creator>Prasad, Y.V.R.K.</creator><creator>Rao, K.P.</creator><creator>Hort, N.</creator><creator>Kainer, K.U.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090225</creationdate><title>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</title><author>Prasad, Y.V.R.K. ; Rao, K.P. ; Hort, N. ; Kainer, K.U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ad74b4daa86e1ec754ec6ad1acf646793e92fb613cdd6c62d3be1aa24de6dda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cold working, work hardening; annealing, quenching, tempering, recovery, and recrystallization; textures</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dynamic recrystallization</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Kinetic analysis</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Mg–Sn–Ca alloy</topic><topic>Physics</topic><topic>Processing map</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><topic>Workability optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Y.V.R.K.</creatorcontrib><creatorcontrib>Rao, K.P.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Kainer, K.U.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Y.V.R.K.</au><au>Rao, K.P.</au><au>Hort, N.</au><au>Kainer, K.U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2009-02-25</date><risdate>2009</risdate><volume>502</volume><issue>1</issue><spage>25</spage><epage>31</epage><pages>25-31</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The hot working behavior of extruded Mg–3Sn–1Ca alloy has been characterized by compression testing in the temperature range of 300–550 °C and strain rate range of 0.0003–10 s −1 with a view to evaluate the optimum processing parameters as well as the rate-controlling mechanisms. Processing maps, developed on the basis of the temperature and strain rate dependence of flow stress, exhibited two domains in which dynamic recrystallization occurs. Both these are in the temperature range 325–500 °C, with one in the lower strain rate range (0.0003–0.003 s −1) and the other in the higher strain rate range (1–10 s −1), the optimum temperature being 400 °C. Kinetic analysis in the above two domains yielded apparent activation energy values of 196 and 168 kJ/mole, respectively, which are higher than that for self-diffusion in pure magnesium suggesting that the large volume fraction of CaMgSn intermetallic particles in the matrix causes significant back stress. In the change-over strain rate range (0.003–0.3 s −1), unusual grain size changes have occurred which may render microstructural control difficult.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2008.10.041</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2009-02, Vol.502 (1), p.25-31
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_33456096
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cold working, work hardening
annealing, quenching, tempering, recovery, and recrystallization
textures
Cross-disciplinary physics: materials science
rheology
Dynamic recrystallization
Elasticity. Plasticity
Exact sciences and technology
Kinetic analysis
Materials science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Mg–Sn–Ca alloy
Physics
Processing map
Treatment of materials and its effects on microstructure and properties
Workability optimization
title Optimum parameters and rate-controlling mechanisms for hot working of extruded Mg–3Sn–1Ca alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimum%20parameters%20and%20rate-controlling%20mechanisms%20for%20hot%20working%20of%20extruded%20Mg%E2%80%933Sn%E2%80%931Ca%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Prasad,%20Y.V.R.K.&rft.date=2009-02-25&rft.volume=502&rft.issue=1&rft.spage=25&rft.epage=31&rft.pages=25-31&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2008.10.041&rft_dat=%3Cproquest_cross%3E33456096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33456096&rft_id=info:pmid/&rft_els_id=S0921509308012410&rfr_iscdi=true