An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations

In this paper we propose a discontinuous Galerkin scheme for the numerical approximation of unsteady heat conduction and diffusion problems in multi dimensions. The scheme is based on a discrete space–time variational formulation and uses an explicit approximative solution as predictor. This predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2008-05, Vol.227 (11), p.5649-5670
Hauptverfasser: Lörcher, Frieder, Gassner, Gregor, Munz, Claus-Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5670
container_issue 11
container_start_page 5649
container_title Journal of computational physics
container_volume 227
creator Lörcher, Frieder
Gassner, Gregor
Munz, Claus-Dieter
description In this paper we propose a discontinuous Galerkin scheme for the numerical approximation of unsteady heat conduction and diffusion problems in multi dimensions. The scheme is based on a discrete space–time variational formulation and uses an explicit approximative solution as predictor. This predictor is obtained by a Taylor expansion about the barycenter of each grid cell at the old time level in which all time or mixed space–time derivatives are replaced by space derivatives using the differential equation several times. The heat flux between adjacent grid cells is approximated by a local analytical solution. It takes into account that the approximate solution may be discontinuous at grid cell interfaces and allows the approximation of discontinuities in the heat conduction coefficient. The presented explicit scheme has to satisfy a typical parabolic stability restriction. The loss of efficiency, especially in the case of strongly varying sizes of cells in unstructured grids, is circumvented by allowing different time steps in each grid cell which are adopted to the local stability restrictions. We discuss the linear stability properties in this case of varying diffusion coefficients, varying space increments and local time steps and extent these considerations also to a modified symmetric interior penalization scheme. In numerical simulations we show the efficiency and the optimal order of convergence in space and time.
doi_str_mv 10.1016/j.jcp.2008.02.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33404326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999108001046</els_id><sourcerecordid>33404326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ec87ae7664ab69cef2f51e81b9cea9a6288039443e9a937d4305750869c596403</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxa2qSN0ufABuvrS3hPGfOLF6WqEClZB6gbNlnAl4N-tkbact3x6vFvXIaUbj37zxe4RcMqgZMHW1rbdurjlAVwOvgTWfyIqBhoq3TH0mKwDOKq01-0K-prSFAjayW5HdJlD8N4_e-Ux7n9wUsg_LtCR6a0eMOx9oci-4R_rX5xc6Ts6ONPs9VinjPPvwTIcp0mcMGMvLEsrY9q9FaxiW5Kcif1hsLk06J2eDHRNevNc1ebz5-XB9V93_vv11vbmvnGi6XKHrWoutUtI-Ke1w4EPDsGNPpbfaKt51ILSUArXVou2lgKZtoCtso5UEsSbfT7pznA4Lpmz2xRiOow1YjBkhJEjBVQHZCXRxSiniYObo9za-GgbmGKvZmhKrOcZqgJsSa9n59i5uU4liiDY4n_4vchCN1Or4iR8nDovTPx6jSc5jcNj7iC6bfvIfXHkDW_SOsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33404326</pqid></control><display><type>article</type><title>An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lörcher, Frieder ; Gassner, Gregor ; Munz, Claus-Dieter</creator><creatorcontrib>Lörcher, Frieder ; Gassner, Gregor ; Munz, Claus-Dieter</creatorcontrib><description>In this paper we propose a discontinuous Galerkin scheme for the numerical approximation of unsteady heat conduction and diffusion problems in multi dimensions. The scheme is based on a discrete space–time variational formulation and uses an explicit approximative solution as predictor. This predictor is obtained by a Taylor expansion about the barycenter of each grid cell at the old time level in which all time or mixed space–time derivatives are replaced by space derivatives using the differential equation several times. The heat flux between adjacent grid cells is approximated by a local analytical solution. It takes into account that the approximate solution may be discontinuous at grid cell interfaces and allows the approximation of discontinuities in the heat conduction coefficient. The presented explicit scheme has to satisfy a typical parabolic stability restriction. The loss of efficiency, especially in the case of strongly varying sizes of cells in unstructured grids, is circumvented by allowing different time steps in each grid cell which are adopted to the local stability restrictions. We discuss the linear stability properties in this case of varying diffusion coefficients, varying space increments and local time steps and extent these considerations also to a modified symmetric interior penalization scheme. In numerical simulations we show the efficiency and the optimal order of convergence in space and time.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2008.02.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Discontinuous Galerkin schemes ; Exact sciences and technology ; High order accuracy ; Local time-stepping ; Mathematical methods in physics ; Nonlinear unsteady diffusion equations ; Numerical flux for heat conduction ; Physics ; Space–time approach</subject><ispartof>Journal of computational physics, 2008-05, Vol.227 (11), p.5649-5670</ispartof><rights>2008 Elsevier Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ec87ae7664ab69cef2f51e81b9cea9a6288039443e9a937d4305750869c596403</citedby><cites>FETCH-LOGICAL-c358t-ec87ae7664ab69cef2f51e81b9cea9a6288039443e9a937d4305750869c596403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2008.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20354960$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lörcher, Frieder</creatorcontrib><creatorcontrib>Gassner, Gregor</creatorcontrib><creatorcontrib>Munz, Claus-Dieter</creatorcontrib><title>An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations</title><title>Journal of computational physics</title><description>In this paper we propose a discontinuous Galerkin scheme for the numerical approximation of unsteady heat conduction and diffusion problems in multi dimensions. The scheme is based on a discrete space–time variational formulation and uses an explicit approximative solution as predictor. This predictor is obtained by a Taylor expansion about the barycenter of each grid cell at the old time level in which all time or mixed space–time derivatives are replaced by space derivatives using the differential equation several times. The heat flux between adjacent grid cells is approximated by a local analytical solution. It takes into account that the approximate solution may be discontinuous at grid cell interfaces and allows the approximation of discontinuities in the heat conduction coefficient. The presented explicit scheme has to satisfy a typical parabolic stability restriction. The loss of efficiency, especially in the case of strongly varying sizes of cells in unstructured grids, is circumvented by allowing different time steps in each grid cell which are adopted to the local stability restrictions. We discuss the linear stability properties in this case of varying diffusion coefficients, varying space increments and local time steps and extent these considerations also to a modified symmetric interior penalization scheme. In numerical simulations we show the efficiency and the optimal order of convergence in space and time.</description><subject>Computational techniques</subject><subject>Discontinuous Galerkin schemes</subject><subject>Exact sciences and technology</subject><subject>High order accuracy</subject><subject>Local time-stepping</subject><subject>Mathematical methods in physics</subject><subject>Nonlinear unsteady diffusion equations</subject><subject>Numerical flux for heat conduction</subject><subject>Physics</subject><subject>Space–time approach</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9P3DAQxa2qSN0ufABuvrS3hPGfOLF6WqEClZB6gbNlnAl4N-tkbact3x6vFvXIaUbj37zxe4RcMqgZMHW1rbdurjlAVwOvgTWfyIqBhoq3TH0mKwDOKq01-0K-prSFAjayW5HdJlD8N4_e-Ux7n9wUsg_LtCR6a0eMOx9oci-4R_rX5xc6Ts6ONPs9VinjPPvwTIcp0mcMGMvLEsrY9q9FaxiW5Kcif1hsLk06J2eDHRNevNc1ebz5-XB9V93_vv11vbmvnGi6XKHrWoutUtI-Ke1w4EPDsGNPpbfaKt51ILSUArXVou2lgKZtoCtso5UEsSbfT7pznA4Lpmz2xRiOow1YjBkhJEjBVQHZCXRxSiniYObo9za-GgbmGKvZmhKrOcZqgJsSa9n59i5uU4liiDY4n_4vchCN1Or4iR8nDovTPx6jSc5jcNj7iC6bfvIfXHkDW_SOsA</recordid><startdate>20080510</startdate><enddate>20080510</enddate><creator>Lörcher, Frieder</creator><creator>Gassner, Gregor</creator><creator>Munz, Claus-Dieter</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080510</creationdate><title>An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations</title><author>Lörcher, Frieder ; Gassner, Gregor ; Munz, Claus-Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ec87ae7664ab69cef2f51e81b9cea9a6288039443e9a937d4305750869c596403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational techniques</topic><topic>Discontinuous Galerkin schemes</topic><topic>Exact sciences and technology</topic><topic>High order accuracy</topic><topic>Local time-stepping</topic><topic>Mathematical methods in physics</topic><topic>Nonlinear unsteady diffusion equations</topic><topic>Numerical flux for heat conduction</topic><topic>Physics</topic><topic>Space–time approach</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lörcher, Frieder</creatorcontrib><creatorcontrib>Gassner, Gregor</creatorcontrib><creatorcontrib>Munz, Claus-Dieter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lörcher, Frieder</au><au>Gassner, Gregor</au><au>Munz, Claus-Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations</atitle><jtitle>Journal of computational physics</jtitle><date>2008-05-10</date><risdate>2008</risdate><volume>227</volume><issue>11</issue><spage>5649</spage><epage>5670</epage><pages>5649-5670</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper we propose a discontinuous Galerkin scheme for the numerical approximation of unsteady heat conduction and diffusion problems in multi dimensions. The scheme is based on a discrete space–time variational formulation and uses an explicit approximative solution as predictor. This predictor is obtained by a Taylor expansion about the barycenter of each grid cell at the old time level in which all time or mixed space–time derivatives are replaced by space derivatives using the differential equation several times. The heat flux between adjacent grid cells is approximated by a local analytical solution. It takes into account that the approximate solution may be discontinuous at grid cell interfaces and allows the approximation of discontinuities in the heat conduction coefficient. The presented explicit scheme has to satisfy a typical parabolic stability restriction. The loss of efficiency, especially in the case of strongly varying sizes of cells in unstructured grids, is circumvented by allowing different time steps in each grid cell which are adopted to the local stability restrictions. We discuss the linear stability properties in this case of varying diffusion coefficients, varying space increments and local time steps and extent these considerations also to a modified symmetric interior penalization scheme. In numerical simulations we show the efficiency and the optimal order of convergence in space and time.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2008.02.015</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2008-05, Vol.227 (11), p.5649-5670
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_33404326
source Elsevier ScienceDirect Journals Complete
subjects Computational techniques
Discontinuous Galerkin schemes
Exact sciences and technology
High order accuracy
Local time-stepping
Mathematical methods in physics
Nonlinear unsteady diffusion equations
Numerical flux for heat conduction
Physics
Space–time approach
title An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20explicit%20discontinuous%20Galerkin%20scheme%20with%20local%20time-stepping%20for%20general%20unsteady%20diffusion%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=L%C3%B6rcher,%20Frieder&rft.date=2008-05-10&rft.volume=227&rft.issue=11&rft.spage=5649&rft.epage=5670&rft.pages=5649-5670&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2008.02.015&rft_dat=%3Cproquest_cross%3E33404326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33404326&rft_id=info:pmid/&rft_els_id=S0021999108001046&rfr_iscdi=true