Analysis of Semi-Active and Passive Suspensions System for Off-Road Vehicles

The speed of off-road vehicles over rough terrain is generally determined by the ride quality not by the engine power. For this reason, researches are currently being undertaking to improve the ride dynamics of these vehicles using an advanced suspension system. This study intends to provide a preli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Benlahcene, Zohir, Faris, Waleed F, Khan, M D Raisuddin
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The speed of off-road vehicles over rough terrain is generally determined by the ride quality not by the engine power. For this reason, researches are currently being undertaking to improve the ride dynamics of these vehicles using an advanced suspension system. This study intends to provide a preliminary evaluation of whether semi-active suspensions are beneficial to improving ride and handling in off-road vehicles. One of the greatest challenges in designing off-road vehicle suspension system is maintaining a good balance between vehicle ride and handling. Three configurations of these vehicles; 2-axle, 3-xle and 4-axles have been studied and their performances are compared. The application of several control policies of semi-active suspension system, namely skyhook; ground-hook and hybrid controls have been analyzed and compared with passive systems. The results show that the hybrid control policy yields better comfort than a passive suspension, without reducing the road-holding quality or increasing the suspension displacement. The hybrid control policy is also shown to be a better compromise between comfort, road-holding and suspension displacement than the skyhook and ground-hook control policies. Results show an improvement in ride comfort and vehicle handling using 4-axle over 3-axle and 2-axle when emphasis is placed on the response of the vehicle body acceleration, suspension and tyre deflection.
ISSN:0094-243X
DOI:10.1063/1.3106493