Linear Systems of Cubics Singular at General Points of Projective Space
We present an elementary proof that given a general collection of d points in Pn the linear system of cubics singular on each point has the expected codimension except when n=4 and d=7. In that case the cubic is unique. This, together with previous work of the author, gives a proof of the Alexander–...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2002-12, Vol.134 (3), p.269-282 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an elementary proof that given a general collection of d points in Pn the linear system of cubics singular on each point has the expected codimension except when n=4 and d=7. In that case the cubic is unique. This, together with previous work of the author, gives a proof of the Alexander–Hirschowitz interpolation theorem. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1023/A:1020905322129 |