DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa
Magnetic shape memory alloys (MSMAs) are the smart materials which can undergo a reversible structural phase transition when a magnetic field is applied. The experimentally most studied MSMA, Ni2MnGa, undergoes a martensitic phase transition from a high temperature cubic phase to a low temperature t...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2008-05, Vol.205 (5), p.1026-1035 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1035 |
---|---|
container_issue | 5 |
container_start_page | 1026 |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 205 |
creator | Özdemir Kart, S. Uludog˘an, M. Karaman, I. Çag˘ın, T. |
description | Magnetic shape memory alloys (MSMAs) are the smart materials which can undergo a reversible structural phase transition when a magnetic field is applied. The experimentally most studied MSMA, Ni2MnGa, undergoes a martensitic phase transition from a high temperature cubic phase to a low temperature tetragonal phase. In this work, a detailed study of structure, magnetic and mechanical properties of Ni2MnGa in these phases were performed using density functional theory (DFT). The predicted lattice constant, bulk modulus, magnetic moments and elastic constants of the initial L21 structure are in good agreement with experimental results and previous calculations. We report the martensitic phase at c /a = 1.26 for non‐modulated and c /a = 0.93 for 5M modulated structures which are consistent with the experiments. Analysis of electronic density of states showed that the double minority spin peak appeared at the Fermi level is due to the hybridization of Ga 4p and Ni 3d states. The peaks in the minority spin in the cubic structure reverse their order during martensitic transformation. The elastic constants of martensitic phases were also calculated to encourage measurements of these quantities. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pssa.200776453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_33257310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33257310</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2153-1409beb26b77741895351254c4ed8ad5060e9d328852d1c37e48ddc817c1cdd43</originalsourceid><addsrcrecordid>eNo9kE1PFEEQhidEExG5eu4Lnhzoz-kZb4iyoLiYAMF46dR217Kt82XXjLL_3iFL5lRvpZ63Dk-WvRX8WHAuT3oiOJacW1too_ayfVEWMi-UqF7MmfNX2WuiX5xro63Yz9yn81tGwxgiEuvaKabRD2PC96xBv4E2emLQBtZvgJCtcAN_Y5dYt2YNPLQ4RM9oAz1OeNOlLYO67rb0gS2j_NYu4E32cg014eHzPMjuzj_fnl3kV9eLy7PTqzxKYVQuNK9WuJLFylqrRVkZZYQ02msMJQTDC45VULIsjQzCK4u6DMGXwnrhQ9DqIHu3-9un7s-INLgmkse6hha7kZxS0lgl-AQePYNAHup1gtZHcn2KDaStk1wZrU0xcdWO-xdr3M53wd2TbPck282y3febm9N5m7r5rhtpwMe5C-m3K6yyxt0vF676sbz4-uXjT1eo_1sChAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33257310</pqid></control><display><type>article</type><title>DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Özdemir Kart, S. ; Uludog˘an, M. ; Karaman, I. ; Çag˘ın, T.</creator><creatorcontrib>Özdemir Kart, S. ; Uludog˘an, M. ; Karaman, I. ; Çag˘ın, T.</creatorcontrib><description>Magnetic shape memory alloys (MSMAs) are the smart materials which can undergo a reversible structural phase transition when a magnetic field is applied. The experimentally most studied MSMA, Ni2MnGa, undergoes a martensitic phase transition from a high temperature cubic phase to a low temperature tetragonal phase. In this work, a detailed study of structure, magnetic and mechanical properties of Ni2MnGa in these phases were performed using density functional theory (DFT). The predicted lattice constant, bulk modulus, magnetic moments and elastic constants of the initial L21 structure are in good agreement with experimental results and previous calculations. We report the martensitic phase at c /a = 1.26 for non‐modulated and c /a = 0.93 for 5M modulated structures which are consistent with the experiments. Analysis of electronic density of states showed that the double minority spin peak appeared at the Fermi level is due to the hybridization of Ga 4p and Ni 3d states. The peaks in the minority spin in the cubic structure reverse their order during martensitic transformation. The elastic constants of martensitic phases were also calculated to encourage measurements of these quantities. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6300</identifier><identifier>ISSN: 0031-8965</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.200776453</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>31.15.Ar ; 62.20.Dc ; 71.15.Nc ; 71.20.Lp ; 75.50.Cc ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron density of states and band structure of crystalline solids ; Electron states ; Exact sciences and technology ; Martensitic transformations ; Materials science ; Other metals and alloys ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics</subject><ispartof>Physica status solidi. A, Applications and materials science, 2008-05, Vol.205 (5), p.1026-1035</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.200776453$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.200776453$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20354456$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Özdemir Kart, S.</creatorcontrib><creatorcontrib>Uludog˘an, M.</creatorcontrib><creatorcontrib>Karaman, I.</creatorcontrib><creatorcontrib>Çag˘ın, T.</creatorcontrib><title>DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>phys. stat. sol. (a)</addtitle><description>Magnetic shape memory alloys (MSMAs) are the smart materials which can undergo a reversible structural phase transition when a magnetic field is applied. The experimentally most studied MSMA, Ni2MnGa, undergoes a martensitic phase transition from a high temperature cubic phase to a low temperature tetragonal phase. In this work, a detailed study of structure, magnetic and mechanical properties of Ni2MnGa in these phases were performed using density functional theory (DFT). The predicted lattice constant, bulk modulus, magnetic moments and elastic constants of the initial L21 structure are in good agreement with experimental results and previous calculations. We report the martensitic phase at c /a = 1.26 for non‐modulated and c /a = 0.93 for 5M modulated structures which are consistent with the experiments. Analysis of electronic density of states showed that the double minority spin peak appeared at the Fermi level is due to the hybridization of Ga 4p and Ni 3d states. The peaks in the minority spin in the cubic structure reverse their order during martensitic transformation. The elastic constants of martensitic phases were also calculated to encourage measurements of these quantities. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>31.15.Ar</subject><subject>62.20.Dc</subject><subject>71.15.Nc</subject><subject>71.20.Lp</subject><subject>75.50.Cc</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron density of states and band structure of crystalline solids</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Martensitic transformations</subject><subject>Materials science</subject><subject>Other metals and alloys</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><issn>1862-6300</issn><issn>0031-8965</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PFEEQhidEExG5eu4Lnhzoz-kZb4iyoLiYAMF46dR217Kt82XXjLL_3iFL5lRvpZ63Dk-WvRX8WHAuT3oiOJacW1too_ayfVEWMi-UqF7MmfNX2WuiX5xro63Yz9yn81tGwxgiEuvaKabRD2PC96xBv4E2emLQBtZvgJCtcAN_Y5dYt2YNPLQ4RM9oAz1OeNOlLYO67rb0gS2j_NYu4E32cg014eHzPMjuzj_fnl3kV9eLy7PTqzxKYVQuNK9WuJLFylqrRVkZZYQ02msMJQTDC45VULIsjQzCK4u6DMGXwnrhQ9DqIHu3-9un7s-INLgmkse6hha7kZxS0lgl-AQePYNAHup1gtZHcn2KDaStk1wZrU0xcdWO-xdr3M53wd2TbPck282y3febm9N5m7r5rhtpwMe5C-m3K6yyxt0vF676sbz4-uXjT1eo_1sChAc</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Özdemir Kart, S.</creator><creator>Uludog˘an, M.</creator><creator>Karaman, I.</creator><creator>Çag˘ın, T.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200805</creationdate><title>DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa</title><author>Özdemir Kart, S. ; Uludog˘an, M. ; Karaman, I. ; Çag˘ın, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2153-1409beb26b77741895351254c4ed8ad5060e9d328852d1c37e48ddc817c1cdd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>31.15.Ar</topic><topic>62.20.Dc</topic><topic>71.15.Nc</topic><topic>71.20.Lp</topic><topic>75.50.Cc</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron density of states and band structure of crystalline solids</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Martensitic transformations</topic><topic>Materials science</topic><topic>Other metals and alloys</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özdemir Kart, S.</creatorcontrib><creatorcontrib>Uludog˘an, M.</creatorcontrib><creatorcontrib>Karaman, I.</creatorcontrib><creatorcontrib>Çag˘ın, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özdemir Kart, S.</au><au>Uludog˘an, M.</au><au>Karaman, I.</au><au>Çag˘ın, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>phys. stat. sol. (a)</addtitle><date>2008-05</date><risdate>2008</risdate><volume>205</volume><issue>5</issue><spage>1026</spage><epage>1035</epage><pages>1026-1035</pages><issn>1862-6300</issn><issn>0031-8965</issn><eissn>1862-6319</eissn><abstract>Magnetic shape memory alloys (MSMAs) are the smart materials which can undergo a reversible structural phase transition when a magnetic field is applied. The experimentally most studied MSMA, Ni2MnGa, undergoes a martensitic phase transition from a high temperature cubic phase to a low temperature tetragonal phase. In this work, a detailed study of structure, magnetic and mechanical properties of Ni2MnGa in these phases were performed using density functional theory (DFT). The predicted lattice constant, bulk modulus, magnetic moments and elastic constants of the initial L21 structure are in good agreement with experimental results and previous calculations. We report the martensitic phase at c /a = 1.26 for non‐modulated and c /a = 0.93 for 5M modulated structures which are consistent with the experiments. Analysis of electronic density of states showed that the double minority spin peak appeared at the Fermi level is due to the hybridization of Ga 4p and Ni 3d states. The peaks in the minority spin in the cubic structure reverse their order during martensitic transformation. The elastic constants of martensitic phases were also calculated to encourage measurements of these quantities. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssa.200776453</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2008-05, Vol.205 (5), p.1026-1035 |
issn | 1862-6300 0031-8965 1862-6319 |
language | eng |
recordid | cdi_proquest_miscellaneous_33257310 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 31.15.Ar 62.20.Dc 71.15.Nc 71.20.Lp 75.50.Cc Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electron density of states and band structure of crystalline solids Electron states Exact sciences and technology Martensitic transformations Materials science Other metals and alloys Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics |
title | DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20studies%20on%20structure,%20mechanics%20and%20phase%20behavior%20of%20magnetic%20shape%20memory%20alloys:%20Ni2MnGa&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=%C3%96zdemir%20Kart,%20S.&rft.date=2008-05&rft.volume=205&rft.issue=5&rft.spage=1026&rft.epage=1035&rft.pages=1026-1035&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.200776453&rft_dat=%3Cproquest_pasca%3E33257310%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33257310&rft_id=info:pmid/&rfr_iscdi=true |