Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity
We conducted an investigation into the thermodynamic properties of two stoichiometric CaCu3Ti4O12(CCTO) samples prepared by solid-state reaction and soft chemistry methods to probe the stability of the material relative to simpler oxide constituents (e.g., CaO, CuO, and TiO2) over a wide temperature...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2008-06, Vol.23 (6), p.1522-1531 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1531 |
---|---|
container_issue | 6 |
container_start_page | 1522 |
container_title | Journal of materials research |
container_volume | 23 |
creator | Levchenko, Andrey A. Marchin, Loïc Moriya, Yosuke Kawaji, Hitoshi Atake, Tooru Guillemet-Fritsch, Sophie Durand, Bernard Navrotsky, Alexandra |
description | We conducted an investigation into the thermodynamic properties of two stoichiometric CaCu3Ti4O12(CCTO) samples prepared by solid-state reaction and soft chemistry methods to probe the stability of the material relative to simpler oxide constituents (e.g., CaO, CuO, and TiO2) over a wide temperature range. Thermodynamic functions (i.e., heat capacity, formation enthalpies, entropies, and Gibbs free energies) have been measured from near absolute zero to 1100 K using calorimetric methods, including drop solution, low-temperature adiabatic relaxation, and differential scanning calorimetry. In addition, the thermodynamic characteristics of the magnetic-phase transition from the antiferromagnetic to the paramagnetic state are reported. It has been shown that CCTO is very stable relative to constituent oxides and calcium titanate at room temperature and higher, independent of the synthesis route. The enthalpic factor is dominant in the thermodynamics of CCTO, with the entropic factor having almost no effect on the stability of the compound relative to other oxide assemblages. The recommended values for the standard molar enthalpy of formation from constituent oxides and from elements at 298.15 K are −122.1 ± 4.5 and −4155.7 ± 5.2 kJ/mol−1, respectively. The mean of the third law entropy at 298.15 K is 368.4 ± 0.1 J/mol−1/K−1. Based on the thermodynamic data reported, the study confirms the possibility of CCTO decomposition in a reducing atmosphere or CO2 under conditions recently observed in experiments. |
doi_str_mv | 10.1557/JMR.2008.0201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_33249421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_JMR_2008_0201</cupid><sourcerecordid>33249421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ab9e2ceff3b6d512932464b1093aef143b31748b0e53a5e313ea122ad027a9253</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUwsmdiIqk_8zGiAAXUqgIKA4vlJJfikjTFdoD-e1yFnemGe973Tg9C5wRHRIhk8jB_iijGaYQpJgdoRDHnoWA0PkQjnKY8pBnhx-jE2jXGROCEj9B1rprO6Bac0WVgXV_tgq4OcpX3bKn5gtDLQAUlGNX6_bd278FKq40LtmBa7Zz-0m53io5q1Vg4-5tj9HJ7s8zvwtliep9fzcKS8cSFqsiAllDXrIgrQWjGKI95QXDGFNSEs4KRhKcFBsGUAEYYKEKpqjBNVEYFG6OLoXdrus8erJOttiU0jdpA11vJfGHGKfFgNIB2a_RmBUauu95s_G-SYLmXJb0suZcl97J8IBwC2jr4kT7VKrOTynzIOGGJkPH0Ub7Nl_j1eXotuecnA1-qtjC6WsF_F34B6FN5Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33249421</pqid></control><display><type>article</type><title>Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Levchenko, Andrey A. ; Marchin, Loïc ; Moriya, Yosuke ; Kawaji, Hitoshi ; Atake, Tooru ; Guillemet-Fritsch, Sophie ; Durand, Bernard ; Navrotsky, Alexandra</creator><creatorcontrib>Levchenko, Andrey A. ; Marchin, Loïc ; Moriya, Yosuke ; Kawaji, Hitoshi ; Atake, Tooru ; Guillemet-Fritsch, Sophie ; Durand, Bernard ; Navrotsky, Alexandra</creatorcontrib><description>We conducted an investigation into the thermodynamic properties of two stoichiometric CaCu3Ti4O12(CCTO) samples prepared by solid-state reaction and soft chemistry methods to probe the stability of the material relative to simpler oxide constituents (e.g., CaO, CuO, and TiO2) over a wide temperature range. Thermodynamic functions (i.e., heat capacity, formation enthalpies, entropies, and Gibbs free energies) have been measured from near absolute zero to 1100 K using calorimetric methods, including drop solution, low-temperature adiabatic relaxation, and differential scanning calorimetry. In addition, the thermodynamic characteristics of the magnetic-phase transition from the antiferromagnetic to the paramagnetic state are reported. It has been shown that CCTO is very stable relative to constituent oxides and calcium titanate at room temperature and higher, independent of the synthesis route. The enthalpic factor is dominant in the thermodynamics of CCTO, with the entropic factor having almost no effect on the stability of the compound relative to other oxide assemblages. The recommended values for the standard molar enthalpy of formation from constituent oxides and from elements at 298.15 K are −122.1 ± 4.5 and −4155.7 ± 5.2 kJ/mol−1, respectively. The mean of the third law entropy at 298.15 K is 368.4 ± 0.1 J/mol−1/K−1. Based on the thermodynamic data reported, the study confirms the possibility of CCTO decomposition in a reducing atmosphere or CO2 under conditions recently observed in experiments.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/JMR.2008.0201</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biomaterials ; Debye temperature ; Dielectric ; Inorganic Chemistry ; Materials Engineering ; Materials Science ; Nanotechnology ; Phase equilibria</subject><ispartof>Journal of materials research, 2008-06, Vol.23 (6), p.1522-1531</ispartof><rights>Copyright © Materials Research Society 2008</rights><rights>The Materials Research Society 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ab9e2ceff3b6d512932464b1093aef143b31748b0e53a5e313ea122ad027a9253</citedby><cites>FETCH-LOGICAL-c347t-ab9e2ceff3b6d512932464b1093aef143b31748b0e53a5e313ea122ad027a9253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/JMR.2008.0201$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/JMR.2008.0201$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Levchenko, Andrey A.</creatorcontrib><creatorcontrib>Marchin, Loïc</creatorcontrib><creatorcontrib>Moriya, Yosuke</creatorcontrib><creatorcontrib>Kawaji, Hitoshi</creatorcontrib><creatorcontrib>Atake, Tooru</creatorcontrib><creatorcontrib>Guillemet-Fritsch, Sophie</creatorcontrib><creatorcontrib>Durand, Bernard</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><title>Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>We conducted an investigation into the thermodynamic properties of two stoichiometric CaCu3Ti4O12(CCTO) samples prepared by solid-state reaction and soft chemistry methods to probe the stability of the material relative to simpler oxide constituents (e.g., CaO, CuO, and TiO2) over a wide temperature range. Thermodynamic functions (i.e., heat capacity, formation enthalpies, entropies, and Gibbs free energies) have been measured from near absolute zero to 1100 K using calorimetric methods, including drop solution, low-temperature adiabatic relaxation, and differential scanning calorimetry. In addition, the thermodynamic characteristics of the magnetic-phase transition from the antiferromagnetic to the paramagnetic state are reported. It has been shown that CCTO is very stable relative to constituent oxides and calcium titanate at room temperature and higher, independent of the synthesis route. The enthalpic factor is dominant in the thermodynamics of CCTO, with the entropic factor having almost no effect on the stability of the compound relative to other oxide assemblages. The recommended values for the standard molar enthalpy of formation from constituent oxides and from elements at 298.15 K are −122.1 ± 4.5 and −4155.7 ± 5.2 kJ/mol−1, respectively. The mean of the third law entropy at 298.15 K is 368.4 ± 0.1 J/mol−1/K−1. Based on the thermodynamic data reported, the study confirms the possibility of CCTO decomposition in a reducing atmosphere or CO2 under conditions recently observed in experiments.</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Debye temperature</subject><subject>Dielectric</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Phase equilibria</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqUwsmdiIqk_8zGiAAXUqgIKA4vlJJfikjTFdoD-e1yFnemGe973Tg9C5wRHRIhk8jB_iijGaYQpJgdoRDHnoWA0PkQjnKY8pBnhx-jE2jXGROCEj9B1rprO6Bac0WVgXV_tgq4OcpX3bKn5gtDLQAUlGNX6_bd278FKq40LtmBa7Zz-0m53io5q1Vg4-5tj9HJ7s8zvwtliep9fzcKS8cSFqsiAllDXrIgrQWjGKI95QXDGFNSEs4KRhKcFBsGUAEYYKEKpqjBNVEYFG6OLoXdrus8erJOttiU0jdpA11vJfGHGKfFgNIB2a_RmBUauu95s_G-SYLmXJb0suZcl97J8IBwC2jr4kT7VKrOTynzIOGGJkPH0Ub7Nl_j1eXotuecnA1-qtjC6WsF_F34B6FN5Mw</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Levchenko, Andrey A.</creator><creator>Marchin, Loïc</creator><creator>Moriya, Yosuke</creator><creator>Kawaji, Hitoshi</creator><creator>Atake, Tooru</creator><creator>Guillemet-Fritsch, Sophie</creator><creator>Durand, Bernard</creator><creator>Navrotsky, Alexandra</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><scope>BSCLL</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080601</creationdate><title>Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity</title><author>Levchenko, Andrey A. ; Marchin, Loïc ; Moriya, Yosuke ; Kawaji, Hitoshi ; Atake, Tooru ; Guillemet-Fritsch, Sophie ; Durand, Bernard ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ab9e2ceff3b6d512932464b1093aef143b31748b0e53a5e313ea122ad027a9253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Debye temperature</topic><topic>Dielectric</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Phase equilibria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levchenko, Andrey A.</creatorcontrib><creatorcontrib>Marchin, Loïc</creatorcontrib><creatorcontrib>Moriya, Yosuke</creatorcontrib><creatorcontrib>Kawaji, Hitoshi</creatorcontrib><creatorcontrib>Atake, Tooru</creatorcontrib><creatorcontrib>Guillemet-Fritsch, Sophie</creatorcontrib><creatorcontrib>Durand, Bernard</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><collection>Istex</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levchenko, Andrey A.</au><au>Marchin, Loïc</au><au>Moriya, Yosuke</au><au>Kawaji, Hitoshi</au><au>Atake, Tooru</au><au>Guillemet-Fritsch, Sophie</au><au>Durand, Bernard</au><au>Navrotsky, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>23</volume><issue>6</issue><spage>1522</spage><epage>1531</epage><pages>1522-1531</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>We conducted an investigation into the thermodynamic properties of two stoichiometric CaCu3Ti4O12(CCTO) samples prepared by solid-state reaction and soft chemistry methods to probe the stability of the material relative to simpler oxide constituents (e.g., CaO, CuO, and TiO2) over a wide temperature range. Thermodynamic functions (i.e., heat capacity, formation enthalpies, entropies, and Gibbs free energies) have been measured from near absolute zero to 1100 K using calorimetric methods, including drop solution, low-temperature adiabatic relaxation, and differential scanning calorimetry. In addition, the thermodynamic characteristics of the magnetic-phase transition from the antiferromagnetic to the paramagnetic state are reported. It has been shown that CCTO is very stable relative to constituent oxides and calcium titanate at room temperature and higher, independent of the synthesis route. The enthalpic factor is dominant in the thermodynamics of CCTO, with the entropic factor having almost no effect on the stability of the compound relative to other oxide assemblages. The recommended values for the standard molar enthalpy of formation from constituent oxides and from elements at 298.15 K are −122.1 ± 4.5 and −4155.7 ± 5.2 kJ/mol−1, respectively. The mean of the third law entropy at 298.15 K is 368.4 ± 0.1 J/mol−1/K−1. Based on the thermodynamic data reported, the study confirms the possibility of CCTO decomposition in a reducing atmosphere or CO2 under conditions recently observed in experiments.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/JMR.2008.0201</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2008-06, Vol.23 (6), p.1522-1531 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_miscellaneous_33249421 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied and Technical Physics Biomaterials Debye temperature Dielectric Inorganic Chemistry Materials Engineering Materials Science Nanotechnology Phase equilibria |
title | Calorimetric study of CaCu3Ti4O12, a ceramic with giant permittivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calorimetric%20study%20of%20CaCu3Ti4O12,%20a%20ceramic%20with%20giant%20permittivity&rft.jtitle=Journal%20of%20materials%20research&rft.au=Levchenko,%20Andrey%20A.&rft.date=2008-06-01&rft.volume=23&rft.issue=6&rft.spage=1522&rft.epage=1531&rft.pages=1522-1531&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/JMR.2008.0201&rft_dat=%3Cproquest_sprin%3E33249421%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33249421&rft_id=info:pmid/&rft_cupid=10_1557_JMR_2008_0201&rfr_iscdi=true |