Conducting Poly(anilineboronic acid) Nanostructures: Controlled Synthesis and Characterization

Self‐doped poly(anilineboronic acid) (PABA) nanostructures have been prepared by chemical polymerization in an aqueous acid solution and aliphatic alcohols. In aliphatic alcohols, PABA is soluble under the polymerization conditions. According to 11B NMR studies, the formation of anionic tetrahedral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular chemistry and physics 2008-06, Vol.209 (11), p.1094-1105
Hauptverfasser: Deore, Bhavana A., Yu, Insun, Woodmass, Jarret, Freund, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 11
container_start_page 1094
container_title Macromolecular chemistry and physics
container_volume 209
creator Deore, Bhavana A.
Yu, Insun
Woodmass, Jarret
Freund, Michael S.
description Self‐doped poly(anilineboronic acid) (PABA) nanostructures have been prepared by chemical polymerization in an aqueous acid solution and aliphatic alcohols. In aliphatic alcohols, PABA is soluble under the polymerization conditions. According to 11B NMR studies, the formation of anionic tetrahedral boronate ester in aliphatic alcohols in the presence of fluoride forms the basis of self‐doped, soluble PABA. Transmission electron microscope images show the formation of nanostructures with different shapes and forms in different solvents after precipitation of the polymer as a result of ion exchange in the presence of 0.5 M HCl. The spectroscopic and cyclic voltammetric results confirm the formation of conducting PABA nanostructures in high yield. The conductivity of PABA thin films made from the nanostructures prepared in aqueous acid, methanol, ethanol and 1‐propanol is approximately 15 and 3.0, 2.1 and 1.9 S · cm−1, respectively. The conducting PABA nanostructures are processable since they are easily re‐dispersed in the various solvents up to approximately 5 mg · mL−1. UV‐vis kinetic measurements, XPS and 11B NMR results suggest that the formation of various nanostructures is influenced by the polymerization rate, the degree of self‐doping versus external doping, and the polarity of the solvents used. The PABA nanostructured films produced from these structures exhibit enhanced redox stability in a wider potential window in non‐aqueous media compared to polyaniline due to formation of six‐member heterocyclic complexes containing a boron‐imine dative bond resulting in a self‐doped self‐cross‐linked polymer. The degree of crosslinking depends on the nature of nanostructures. In non‐aqueous media, the self‐doped, self‐cross‐linked PABA nanostructured films are much less susceptible to cathodic and anodic degradation at extreme potentials, overcoming a major limitation of more common conducting polymers.
doi_str_mv 10.1002/macp.200800079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33244873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33244873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-3c685dceecdcbc9ab2527ed4233c02ae939f6c722a38a7a4954f768356c6f3f03</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhSMEEqXlyjkXEByydTxxbHOrIlpatUslFvWGNTtxqMFrL3ZWsPx6stpq1VtP8w7f90Z6RfGmZrOaMX66QlrPOGOKMSb1s-KoFryuQIN4PmXGeVWD4C-LVzn_ZDtMy6PiexdDv6HRhR_lbfTb9xicd8EuY4rBUYnk-g_lHEPMY5q4TbL5YzlJY4re2778ug3jvc0ulxj6srvHhDTa5P7h6GI4KV4M6LN9_XCPi2_nnxbd5-r6y8Vld3ZdESilK6BWiZ6spZ6WpHHJBZe2bzgAMY5Wgx5akpwjKJTYaNEMslUgWmoHGBgcF-_2vesUf29sHs3KZbLeY7Bxkw0AbxolYQJne5BSzDnZwayTW2HampqZ3YxmN6M5zDgJbx-aMRP6IWEglw8WZ6CVEnzi9J7747zdPtFqbs6628c_qr3r8mj_HlxMv0wrQQpzN78wQi_mV-d3N2YB_wH3FJUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33244873</pqid></control><display><type>article</type><title>Conducting Poly(anilineboronic acid) Nanostructures: Controlled Synthesis and Characterization</title><source>Access via Wiley Online Library</source><creator>Deore, Bhavana A. ; Yu, Insun ; Woodmass, Jarret ; Freund, Michael S.</creator><creatorcontrib>Deore, Bhavana A. ; Yu, Insun ; Woodmass, Jarret ; Freund, Michael S.</creatorcontrib><description>Self‐doped poly(anilineboronic acid) (PABA) nanostructures have been prepared by chemical polymerization in an aqueous acid solution and aliphatic alcohols. In aliphatic alcohols, PABA is soluble under the polymerization conditions. According to 11B NMR studies, the formation of anionic tetrahedral boronate ester in aliphatic alcohols in the presence of fluoride forms the basis of self‐doped, soluble PABA. Transmission electron microscope images show the formation of nanostructures with different shapes and forms in different solvents after precipitation of the polymer as a result of ion exchange in the presence of 0.5 M HCl. The spectroscopic and cyclic voltammetric results confirm the formation of conducting PABA nanostructures in high yield. The conductivity of PABA thin films made from the nanostructures prepared in aqueous acid, methanol, ethanol and 1‐propanol is approximately 15 and 3.0, 2.1 and 1.9 S · cm−1, respectively. The conducting PABA nanostructures are processable since they are easily re‐dispersed in the various solvents up to approximately 5 mg · mL−1. UV‐vis kinetic measurements, XPS and 11B NMR results suggest that the formation of various nanostructures is influenced by the polymerization rate, the degree of self‐doping versus external doping, and the polarity of the solvents used. The PABA nanostructured films produced from these structures exhibit enhanced redox stability in a wider potential window in non‐aqueous media compared to polyaniline due to formation of six‐member heterocyclic complexes containing a boron‐imine dative bond resulting in a self‐doped self‐cross‐linked polymer. The degree of crosslinking depends on the nature of nanostructures. In non‐aqueous media, the self‐doped, self‐cross‐linked PABA nanostructured films are much less susceptible to cathodic and anodic degradation at extreme potentials, overcoming a major limitation of more common conducting polymers.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.200800079</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; conducting polymers ; Exact sciences and technology ; nanostructures ; Organic polymers ; Physicochemistry of polymers ; poly(anilineboronic acid) ; Polymers with particular properties ; Preparation, kinetics, thermodynamics, mechanism and catalysts ; properties ; synthesis</subject><ispartof>Macromolecular chemistry and physics, 2008-06, Vol.209 (11), p.1094-1105</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-3c685dceecdcbc9ab2527ed4233c02ae939f6c722a38a7a4954f768356c6f3f03</citedby><cites>FETCH-LOGICAL-c3889-3c685dceecdcbc9ab2527ed4233c02ae939f6c722a38a7a4954f768356c6f3f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.200800079$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.200800079$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20398852$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deore, Bhavana A.</creatorcontrib><creatorcontrib>Yu, Insun</creatorcontrib><creatorcontrib>Woodmass, Jarret</creatorcontrib><creatorcontrib>Freund, Michael S.</creatorcontrib><title>Conducting Poly(anilineboronic acid) Nanostructures: Controlled Synthesis and Characterization</title><title>Macromolecular chemistry and physics</title><addtitle>Macromol. Chem. Phys</addtitle><description>Self‐doped poly(anilineboronic acid) (PABA) nanostructures have been prepared by chemical polymerization in an aqueous acid solution and aliphatic alcohols. In aliphatic alcohols, PABA is soluble under the polymerization conditions. According to 11B NMR studies, the formation of anionic tetrahedral boronate ester in aliphatic alcohols in the presence of fluoride forms the basis of self‐doped, soluble PABA. Transmission electron microscope images show the formation of nanostructures with different shapes and forms in different solvents after precipitation of the polymer as a result of ion exchange in the presence of 0.5 M HCl. The spectroscopic and cyclic voltammetric results confirm the formation of conducting PABA nanostructures in high yield. The conductivity of PABA thin films made from the nanostructures prepared in aqueous acid, methanol, ethanol and 1‐propanol is approximately 15 and 3.0, 2.1 and 1.9 S · cm−1, respectively. The conducting PABA nanostructures are processable since they are easily re‐dispersed in the various solvents up to approximately 5 mg · mL−1. UV‐vis kinetic measurements, XPS and 11B NMR results suggest that the formation of various nanostructures is influenced by the polymerization rate, the degree of self‐doping versus external doping, and the polarity of the solvents used. The PABA nanostructured films produced from these structures exhibit enhanced redox stability in a wider potential window in non‐aqueous media compared to polyaniline due to formation of six‐member heterocyclic complexes containing a boron‐imine dative bond resulting in a self‐doped self‐cross‐linked polymer. The degree of crosslinking depends on the nature of nanostructures. In non‐aqueous media, the self‐doped, self‐cross‐linked PABA nanostructured films are much less susceptible to cathodic and anodic degradation at extreme potentials, overcoming a major limitation of more common conducting polymers.</description><subject>Applied sciences</subject><subject>conducting polymers</subject><subject>Exact sciences and technology</subject><subject>nanostructures</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>poly(anilineboronic acid)</subject><subject>Polymers with particular properties</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><subject>properties</subject><subject>synthesis</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhSMEEqXlyjkXEByydTxxbHOrIlpatUslFvWGNTtxqMFrL3ZWsPx6stpq1VtP8w7f90Z6RfGmZrOaMX66QlrPOGOKMSb1s-KoFryuQIN4PmXGeVWD4C-LVzn_ZDtMy6PiexdDv6HRhR_lbfTb9xicd8EuY4rBUYnk-g_lHEPMY5q4TbL5YzlJY4re2778ug3jvc0ulxj6srvHhDTa5P7h6GI4KV4M6LN9_XCPi2_nnxbd5-r6y8Vld3ZdESilK6BWiZ6spZ6WpHHJBZe2bzgAMY5Wgx5akpwjKJTYaNEMslUgWmoHGBgcF-_2vesUf29sHs3KZbLeY7Bxkw0AbxolYQJne5BSzDnZwayTW2HampqZ3YxmN6M5zDgJbx-aMRP6IWEglw8WZ6CVEnzi9J7747zdPtFqbs6628c_qr3r8mj_HlxMv0wrQQpzN78wQi_mV-d3N2YB_wH3FJUA</recordid><startdate>20080605</startdate><enddate>20080605</enddate><creator>Deore, Bhavana A.</creator><creator>Yu, Insun</creator><creator>Woodmass, Jarret</creator><creator>Freund, Michael S.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20080605</creationdate><title>Conducting Poly(anilineboronic acid) Nanostructures: Controlled Synthesis and Characterization</title><author>Deore, Bhavana A. ; Yu, Insun ; Woodmass, Jarret ; Freund, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-3c685dceecdcbc9ab2527ed4233c02ae939f6c722a38a7a4954f768356c6f3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>conducting polymers</topic><topic>Exact sciences and technology</topic><topic>nanostructures</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>poly(anilineboronic acid)</topic><topic>Polymers with particular properties</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><topic>properties</topic><topic>synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deore, Bhavana A.</creatorcontrib><creatorcontrib>Yu, Insun</creatorcontrib><creatorcontrib>Woodmass, Jarret</creatorcontrib><creatorcontrib>Freund, Michael S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deore, Bhavana A.</au><au>Yu, Insun</au><au>Woodmass, Jarret</au><au>Freund, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conducting Poly(anilineboronic acid) Nanostructures: Controlled Synthesis and Characterization</atitle><jtitle>Macromolecular chemistry and physics</jtitle><addtitle>Macromol. Chem. Phys</addtitle><date>2008-06-05</date><risdate>2008</risdate><volume>209</volume><issue>11</issue><spage>1094</spage><epage>1105</epage><pages>1094-1105</pages><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>Self‐doped poly(anilineboronic acid) (PABA) nanostructures have been prepared by chemical polymerization in an aqueous acid solution and aliphatic alcohols. In aliphatic alcohols, PABA is soluble under the polymerization conditions. According to 11B NMR studies, the formation of anionic tetrahedral boronate ester in aliphatic alcohols in the presence of fluoride forms the basis of self‐doped, soluble PABA. Transmission electron microscope images show the formation of nanostructures with different shapes and forms in different solvents after precipitation of the polymer as a result of ion exchange in the presence of 0.5 M HCl. The spectroscopic and cyclic voltammetric results confirm the formation of conducting PABA nanostructures in high yield. The conductivity of PABA thin films made from the nanostructures prepared in aqueous acid, methanol, ethanol and 1‐propanol is approximately 15 and 3.0, 2.1 and 1.9 S · cm−1, respectively. The conducting PABA nanostructures are processable since they are easily re‐dispersed in the various solvents up to approximately 5 mg · mL−1. UV‐vis kinetic measurements, XPS and 11B NMR results suggest that the formation of various nanostructures is influenced by the polymerization rate, the degree of self‐doping versus external doping, and the polarity of the solvents used. The PABA nanostructured films produced from these structures exhibit enhanced redox stability in a wider potential window in non‐aqueous media compared to polyaniline due to formation of six‐member heterocyclic complexes containing a boron‐imine dative bond resulting in a self‐doped self‐cross‐linked polymer. The degree of crosslinking depends on the nature of nanostructures. In non‐aqueous media, the self‐doped, self‐cross‐linked PABA nanostructured films are much less susceptible to cathodic and anodic degradation at extreme potentials, overcoming a major limitation of more common conducting polymers.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/macp.200800079</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1352
ispartof Macromolecular chemistry and physics, 2008-06, Vol.209 (11), p.1094-1105
issn 1022-1352
1521-3935
language eng
recordid cdi_proquest_miscellaneous_33244873
source Access via Wiley Online Library
subjects Applied sciences
conducting polymers
Exact sciences and technology
nanostructures
Organic polymers
Physicochemistry of polymers
poly(anilineboronic acid)
Polymers with particular properties
Preparation, kinetics, thermodynamics, mechanism and catalysts
properties
synthesis
title Conducting Poly(anilineboronic acid) Nanostructures: Controlled Synthesis and Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conducting%20Poly(anilineboronic%20acid)%20Nanostructures:%20Controlled%20Synthesis%20and%20Characterization&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Deore,%20Bhavana%20A.&rft.date=2008-06-05&rft.volume=209&rft.issue=11&rft.spage=1094&rft.epage=1105&rft.pages=1094-1105&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.200800079&rft_dat=%3Cproquest_cross%3E33244873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33244873&rft_id=info:pmid/&rfr_iscdi=true