Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells

The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2009-04, Vol.228 (6), p.2194-2212
Hauptverfasser: Xu, Zhiliang, Liu, Yingjie, Shu, Chi-Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2212
container_issue 6
container_start_page 2194
container_title Journal of computational physics
container_volume 228
creator Xu, Zhiliang
Liu, Yingjie
Shu, Chi-Wang
description The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.
doi_str_mv 10.1016/j.jcp.2008.11.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33231284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999108006256</els_id><sourcerecordid>33231284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEkvhA3DzBcQlwX-SjSNOqCotUkUvII7WxJ7sesnawXZA_Sh8W6baFQcOPVka_d4bz3tV9VrwRnCxfX9oDnZpJOe6EaLhsntSbQQfeC17sX1abTiXoh6GQTyvXuR84AR2rd5Uf248Jkh27y3MLKGNIZe02uJjYFNMzPlMs-LDGtfMrmHG9MMHdsSyjy4zotazYk3o2C55mv72Zc-Afb_6cleX-wXZ7ANC-t8fgmMLpOJpdUC_248x-bBjFuc5v6yeTTBnfHV-L6pvn66-Xt7Ut3fXny8_3ta2VW2pQUiloYNpmHqAoXXQIx0OXI9Ob0FN0rYAHVcOwY0wKmVRdyixH4eum6S6qN6efJcUf66YiznSyfQDCEgnG6WkElK3BL57FBRcS8k7CplQcUJtijknnMyS_BHSPUHmoS9zMNSXeejLCGGoL9K8OdtDpi6mBMH6_E8ohew7yTVxH04cUii_qD2Trcdg0XmKtxgX_SNb_gKeAq_3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082205999</pqid></control><display><type>article</type><title>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Zhiliang ; Liu, Yingjie ; Shu, Chi-Wang</creator><creatorcontrib>Xu, Zhiliang ; Liu, Yingjie ; Shu, Chi-Wang</creatorcontrib><description>The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2008.11.025</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Accuracy ; Computational techniques ; Discontinuous Galerkin methods ; Exact sciences and technology ; Galerkin methods ; Hierarchical reconstruction ; Hyperbolic conservation laws ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Nonlinearity ; Physics ; Reconstruction ; Scalars ; Two dimensional ; Unstructured grids</subject><ispartof>Journal of computational physics, 2009-04, Vol.228 (6), p.2194-2212</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</citedby><cites>FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2008.11.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21275208$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zhiliang</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><title>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</title><title>Journal of computational physics</title><description>The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.</description><subject>Accuracy</subject><subject>Computational techniques</subject><subject>Discontinuous Galerkin methods</subject><subject>Exact sciences and technology</subject><subject>Galerkin methods</subject><subject>Hierarchical reconstruction</subject><subject>Hyperbolic conservation laws</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>Scalars</subject><subject>Two dimensional</subject><subject>Unstructured grids</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxSMEEkvhA3DzBcQlwX-SjSNOqCotUkUvII7WxJ7sesnawXZA_Sh8W6baFQcOPVka_d4bz3tV9VrwRnCxfX9oDnZpJOe6EaLhsntSbQQfeC17sX1abTiXoh6GQTyvXuR84AR2rd5Uf248Jkh27y3MLKGNIZe02uJjYFNMzPlMs-LDGtfMrmHG9MMHdsSyjy4zotazYk3o2C55mv72Zc-Afb_6cleX-wXZ7ANC-t8fgmMLpOJpdUC_248x-bBjFuc5v6yeTTBnfHV-L6pvn66-Xt7Ut3fXny8_3ta2VW2pQUiloYNpmHqAoXXQIx0OXI9Ob0FN0rYAHVcOwY0wKmVRdyixH4eum6S6qN6efJcUf66YiznSyfQDCEgnG6WkElK3BL57FBRcS8k7CplQcUJtijknnMyS_BHSPUHmoS9zMNSXeejLCGGoL9K8OdtDpi6mBMH6_E8ohew7yTVxH04cUii_qD2Trcdg0XmKtxgX_SNb_gKeAq_3</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Xu, Zhiliang</creator><creator>Liu, Yingjie</creator><creator>Shu, Chi-Wang</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</title><author>Xu, Zhiliang ; Liu, Yingjie ; Shu, Chi-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Computational techniques</topic><topic>Discontinuous Galerkin methods</topic><topic>Exact sciences and technology</topic><topic>Galerkin methods</topic><topic>Hierarchical reconstruction</topic><topic>Hyperbolic conservation laws</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>Scalars</topic><topic>Two dimensional</topic><topic>Unstructured grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhiliang</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhiliang</au><au>Liu, Yingjie</au><au>Shu, Chi-Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</atitle><jtitle>Journal of computational physics</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>228</volume><issue>6</issue><spage>2194</spage><epage>2212</epage><pages>2194-2212</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2008.11.025</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2009-04, Vol.228 (6), p.2194-2212
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_33231284
source Elsevier ScienceDirect Journals
subjects Accuracy
Computational techniques
Discontinuous Galerkin methods
Exact sciences and technology
Galerkin methods
Hierarchical reconstruction
Hyperbolic conservation laws
Mathematical analysis
Mathematical methods in physics
Mathematical models
Nonlinearity
Physics
Reconstruction
Scalars
Two dimensional
Unstructured grids
title Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20reconstruction%20for%20discontinuous%20Galerkin%20methods%20on%20unstructured%20grids%20with%20a%20WENO-type%20linear%20reconstruction%20and%20partial%20neighboring%20cells&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Xu,%20Zhiliang&rft.date=2009-04-01&rft.volume=228&rft.issue=6&rft.spage=2194&rft.epage=2212&rft.pages=2194-2212&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2008.11.025&rft_dat=%3Cproquest_cross%3E33231284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082205999&rft_id=info:pmid/&rft_els_id=S0021999108006256&rfr_iscdi=true