Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells
The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin m...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2009-04, Vol.228 (6), p.2194-2212 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2212 |
---|---|
container_issue | 6 |
container_start_page | 2194 |
container_title | Journal of computational physics |
container_volume | 228 |
creator | Xu, Zhiliang Liu, Yingjie Shu, Chi-Wang |
description | The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions. |
doi_str_mv | 10.1016/j.jcp.2008.11.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33231284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999108006256</els_id><sourcerecordid>33231284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEkvhA3DzBcQlwX-SjSNOqCotUkUvII7WxJ7sesnawXZA_Sh8W6baFQcOPVka_d4bz3tV9VrwRnCxfX9oDnZpJOe6EaLhsntSbQQfeC17sX1abTiXoh6GQTyvXuR84AR2rd5Uf248Jkh27y3MLKGNIZe02uJjYFNMzPlMs-LDGtfMrmHG9MMHdsSyjy4zotazYk3o2C55mv72Zc-Afb_6cleX-wXZ7ANC-t8fgmMLpOJpdUC_248x-bBjFuc5v6yeTTBnfHV-L6pvn66-Xt7Ut3fXny8_3ta2VW2pQUiloYNpmHqAoXXQIx0OXI9Ob0FN0rYAHVcOwY0wKmVRdyixH4eum6S6qN6efJcUf66YiznSyfQDCEgnG6WkElK3BL57FBRcS8k7CplQcUJtijknnMyS_BHSPUHmoS9zMNSXeejLCGGoL9K8OdtDpi6mBMH6_E8ohew7yTVxH04cUii_qD2Trcdg0XmKtxgX_SNb_gKeAq_3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082205999</pqid></control><display><type>article</type><title>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Zhiliang ; Liu, Yingjie ; Shu, Chi-Wang</creator><creatorcontrib>Xu, Zhiliang ; Liu, Yingjie ; Shu, Chi-Wang</creatorcontrib><description>The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2008.11.025</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Accuracy ; Computational techniques ; Discontinuous Galerkin methods ; Exact sciences and technology ; Galerkin methods ; Hierarchical reconstruction ; Hyperbolic conservation laws ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Nonlinearity ; Physics ; Reconstruction ; Scalars ; Two dimensional ; Unstructured grids</subject><ispartof>Journal of computational physics, 2009-04, Vol.228 (6), p.2194-2212</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</citedby><cites>FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2008.11.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21275208$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zhiliang</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><title>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</title><title>Journal of computational physics</title><description>The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.</description><subject>Accuracy</subject><subject>Computational techniques</subject><subject>Discontinuous Galerkin methods</subject><subject>Exact sciences and technology</subject><subject>Galerkin methods</subject><subject>Hierarchical reconstruction</subject><subject>Hyperbolic conservation laws</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Reconstruction</subject><subject>Scalars</subject><subject>Two dimensional</subject><subject>Unstructured grids</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxSMEEkvhA3DzBcQlwX-SjSNOqCotUkUvII7WxJ7sesnawXZA_Sh8W6baFQcOPVka_d4bz3tV9VrwRnCxfX9oDnZpJOe6EaLhsntSbQQfeC17sX1abTiXoh6GQTyvXuR84AR2rd5Uf248Jkh27y3MLKGNIZe02uJjYFNMzPlMs-LDGtfMrmHG9MMHdsSyjy4zotazYk3o2C55mv72Zc-Afb_6cleX-wXZ7ANC-t8fgmMLpOJpdUC_248x-bBjFuc5v6yeTTBnfHV-L6pvn66-Xt7Ut3fXny8_3ta2VW2pQUiloYNpmHqAoXXQIx0OXI9Ob0FN0rYAHVcOwY0wKmVRdyixH4eum6S6qN6efJcUf66YiznSyfQDCEgnG6WkElK3BL57FBRcS8k7CplQcUJtijknnMyS_BHSPUHmoS9zMNSXeejLCGGoL9K8OdtDpi6mBMH6_E8ohew7yTVxH04cUii_qD2Trcdg0XmKtxgX_SNb_gKeAq_3</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Xu, Zhiliang</creator><creator>Liu, Yingjie</creator><creator>Shu, Chi-Wang</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</title><author>Xu, Zhiliang ; Liu, Yingjie ; Shu, Chi-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-a1238a5af9f7aa94da7e109a08bd86a3f2c4aa503deadbab33ce85e2e7b955f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Computational techniques</topic><topic>Discontinuous Galerkin methods</topic><topic>Exact sciences and technology</topic><topic>Galerkin methods</topic><topic>Hierarchical reconstruction</topic><topic>Hyperbolic conservation laws</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Reconstruction</topic><topic>Scalars</topic><topic>Two dimensional</topic><topic>Unstructured grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhiliang</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhiliang</au><au>Liu, Yingjie</au><au>Shu, Chi-Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells</atitle><jtitle>Journal of computational physics</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>228</volume><issue>6</issue><spage>2194</spage><epage>2212</epage><pages>2194-2212</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The hierarchical reconstruction (HR) [Y.-J. Liu, C.-W. Shu, E. Tadmor, M.-P. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007) 2442-2467] is applied to the piecewise quadratic discontinuous Galerkin method on two-dimensional unstructured triangular grids. A variety of limiter functions have been explored in the construction of piecewise linear polynomials in every hierarchical reconstruction stage. We show that on triangular grids, the use of center biased limiter functions is essential in order to recover the desired order of accuracy. Several new techniques have been developed in the paper: (a) we develop a WENO-type linear reconstruction in each hierarchical level, which solves the accuracy degeneracy problem of previous limiter functions and is essentially independent of the local mesh structure; (b) we find that HR using partial neighboring cells significantly reduces over/under-shoots, and further improves the resolution of the numerical solutions. The method is compact and therefore easy to implement. Numerical computations for scalar and systems of nonlinear hyperbolic equations are performed. We demonstrate that the procedure can generate essentially non-oscillatory solutions while keeping the resolution and desired order of accuracy for smooth solutions.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2008.11.025</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2009-04, Vol.228 (6), p.2194-2212 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_33231284 |
source | Elsevier ScienceDirect Journals |
subjects | Accuracy Computational techniques Discontinuous Galerkin methods Exact sciences and technology Galerkin methods Hierarchical reconstruction Hyperbolic conservation laws Mathematical analysis Mathematical methods in physics Mathematical models Nonlinearity Physics Reconstruction Scalars Two dimensional Unstructured grids |
title | Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20reconstruction%20for%20discontinuous%20Galerkin%20methods%20on%20unstructured%20grids%20with%20a%20WENO-type%20linear%20reconstruction%20and%20partial%20neighboring%20cells&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Xu,%20Zhiliang&rft.date=2009-04-01&rft.volume=228&rft.issue=6&rft.spage=2194&rft.epage=2212&rft.pages=2194-2212&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2008.11.025&rft_dat=%3Cproquest_cross%3E33231284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082205999&rft_id=info:pmid/&rft_els_id=S0021999108006256&rfr_iscdi=true |