A generalized midpoint algorithm for the integration of a generalized plasticity model for sands
This paper describes a method of performing the integration of generalized plasticity models, in which, unlike classical elastoplasticity, the yield surface is not explicitly defined. The algorithm is based on a generalized midpoint scheme and is applied to a specific generalized plasticity model fo...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2009-02, Vol.77 (9), p.1201-1223 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1223 |
---|---|
container_issue | 9 |
container_start_page | 1201 |
container_title | International journal for numerical methods in engineering |
container_volume | 77 |
creator | Mira, P. Tonni, L. Pastor, M. Fernández Merodo, J. A. |
description | This paper describes a method of performing the integration of generalized plasticity models, in which, unlike classical elastoplasticity, the yield surface is not explicitly defined. The algorithm is based on a generalized midpoint scheme and is applied to a specific generalized plasticity model for sands, in which a hyperelastic formulation is introduced to describe the reversible component of the soil response instead of the hypoelastic approach originally proposed. In this way, an efficient integration scheme is developed in the elastic strain space. The consistent, algorithmic tangent operator is derived. Isoerror maps are generated to study the local accuracy of the numerical integration algorithm. Results from a series of numerical examples based on the simulation of drained triaxial tests are given to illustrate the accuracy and convergence properties of the algorithm, both at the local and at the global level. Finally an example is given of the simulation of a cyclic triaxial test to illustrate the improvement on accuracy caused by the use of a hyperelastic law into the constitutive equations, as opposed to the hypoelastic formulation initially adopted in the model. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.2445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33210338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33210338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-66a09012f2634169396b055e00a38e333719506fe99172b655b4841fbd3a3dba3</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi0EEktB4hF8AXFJGWdiZ30sbSmIduEA6tFMksnW4MSLnardPj0pu6rEoaeRZr7_0-gX4rWCQwVQvh8HPiyrSj8RCwW2LqCE-qlYzCdbaLtUz8WLnH8BKKUBF-LnkVzzyImCv-NODr7bRD9OksI6Jj9dDbKPSU5XLOctrxNNPo4y9pL-y20C5cm3ftrKIXYc_qUyjV1-KZ71FDK_2s8D8ePj6ffjT8X517PPx0fnRYum0oUxBBZU2ZcGK2UsWtOA1gxAuGRErJXVYHq2VtVlY7RuqmWl-qZDwq4hPBBvd95Nin-uOU9u8LnlEGjkeJ0dYqkAcTmD73Zgm2LOiXu3SX6gtHUK3H2Fbq7Q3Vc4o2_2TsothT7R2Pr8wJdqNs5PzFyx42584O2jPre6ON1797zPE98-8JR-O1Njrd3l6sx9-Pbl5PLiRLkV_gX5so3T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33210338</pqid></control><display><type>article</type><title>A generalized midpoint algorithm for the integration of a generalized plasticity model for sands</title><source>Wiley Online Library All Journals</source><creator>Mira, P. ; Tonni, L. ; Pastor, M. ; Fernández Merodo, J. A.</creator><creatorcontrib>Mira, P. ; Tonni, L. ; Pastor, M. ; Fernández Merodo, J. A.</creatorcontrib><description>This paper describes a method of performing the integration of generalized plasticity models, in which, unlike classical elastoplasticity, the yield surface is not explicitly defined. The algorithm is based on a generalized midpoint scheme and is applied to a specific generalized plasticity model for sands, in which a hyperelastic formulation is introduced to describe the reversible component of the soil response instead of the hypoelastic approach originally proposed. In this way, an efficient integration scheme is developed in the elastic strain space. The consistent, algorithmic tangent operator is derived. Isoerror maps are generated to study the local accuracy of the numerical integration algorithm. Results from a series of numerical examples based on the simulation of drained triaxial tests are given to illustrate the accuracy and convergence properties of the algorithm, both at the local and at the global level. Finally an example is given of the simulation of a cyclic triaxial test to illustrate the improvement on accuracy caused by the use of a hyperelastic law into the constitutive equations, as opposed to the hypoelastic formulation initially adopted in the model. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2445</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computational techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Geotechnics ; implicit algorithm ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical methods in physics ; numerical integration ; Physics ; Soil mechanics. Rocks mechanics ; soil model ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 2009-02, Vol.77 (9), p.1201-1223</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-66a09012f2634169396b055e00a38e333719506fe99172b655b4841fbd3a3dba3</citedby><cites>FETCH-LOGICAL-c3645-66a09012f2634169396b055e00a38e333719506fe99172b655b4841fbd3a3dba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2445$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2445$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21103841$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mira, P.</creatorcontrib><creatorcontrib>Tonni, L.</creatorcontrib><creatorcontrib>Pastor, M.</creatorcontrib><creatorcontrib>Fernández Merodo, J. A.</creatorcontrib><title>A generalized midpoint algorithm for the integration of a generalized plasticity model for sands</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>This paper describes a method of performing the integration of generalized plasticity models, in which, unlike classical elastoplasticity, the yield surface is not explicitly defined. The algorithm is based on a generalized midpoint scheme and is applied to a specific generalized plasticity model for sands, in which a hyperelastic formulation is introduced to describe the reversible component of the soil response instead of the hypoelastic approach originally proposed. In this way, an efficient integration scheme is developed in the elastic strain space. The consistent, algorithmic tangent operator is derived. Isoerror maps are generated to study the local accuracy of the numerical integration algorithm. Results from a series of numerical examples based on the simulation of drained triaxial tests are given to illustrate the accuracy and convergence properties of the algorithm, both at the local and at the global level. Finally an example is given of the simulation of a cyclic triaxial test to illustrate the improvement on accuracy caused by the use of a hyperelastic law into the constitutive equations, as opposed to the hypoelastic formulation initially adopted in the model. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geotechnics</subject><subject>implicit algorithm</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical methods in physics</subject><subject>numerical integration</subject><subject>Physics</subject><subject>Soil mechanics. Rocks mechanics</subject><subject>soil model</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAQhi0EEktB4hF8AXFJGWdiZ30sbSmIduEA6tFMksnW4MSLnardPj0pu6rEoaeRZr7_0-gX4rWCQwVQvh8HPiyrSj8RCwW2LqCE-qlYzCdbaLtUz8WLnH8BKKUBF-LnkVzzyImCv-NODr7bRD9OksI6Jj9dDbKPSU5XLOctrxNNPo4y9pL-y20C5cm3ftrKIXYc_qUyjV1-KZ71FDK_2s8D8ePj6ffjT8X517PPx0fnRYum0oUxBBZU2ZcGK2UsWtOA1gxAuGRErJXVYHq2VtVlY7RuqmWl-qZDwq4hPBBvd95Nin-uOU9u8LnlEGjkeJ0dYqkAcTmD73Zgm2LOiXu3SX6gtHUK3H2Fbq7Q3Vc4o2_2TsothT7R2Pr8wJdqNs5PzFyx42584O2jPre6ON1797zPE98-8JR-O1Njrd3l6sx9-Pbl5PLiRLkV_gX5so3T</recordid><startdate>20090226</startdate><enddate>20090226</enddate><creator>Mira, P.</creator><creator>Tonni, L.</creator><creator>Pastor, M.</creator><creator>Fernández Merodo, J. A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090226</creationdate><title>A generalized midpoint algorithm for the integration of a generalized plasticity model for sands</title><author>Mira, P. ; Tonni, L. ; Pastor, M. ; Fernández Merodo, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-66a09012f2634169396b055e00a38e333719506fe99172b655b4841fbd3a3dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geotechnics</topic><topic>implicit algorithm</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical methods in physics</topic><topic>numerical integration</topic><topic>Physics</topic><topic>Soil mechanics. Rocks mechanics</topic><topic>soil model</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mira, P.</creatorcontrib><creatorcontrib>Tonni, L.</creatorcontrib><creatorcontrib>Pastor, M.</creatorcontrib><creatorcontrib>Fernández Merodo, J. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mira, P.</au><au>Tonni, L.</au><au>Pastor, M.</au><au>Fernández Merodo, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized midpoint algorithm for the integration of a generalized plasticity model for sands</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2009-02-26</date><risdate>2009</risdate><volume>77</volume><issue>9</issue><spage>1201</spage><epage>1223</epage><pages>1201-1223</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>This paper describes a method of performing the integration of generalized plasticity models, in which, unlike classical elastoplasticity, the yield surface is not explicitly defined. The algorithm is based on a generalized midpoint scheme and is applied to a specific generalized plasticity model for sands, in which a hyperelastic formulation is introduced to describe the reversible component of the soil response instead of the hypoelastic approach originally proposed. In this way, an efficient integration scheme is developed in the elastic strain space. The consistent, algorithmic tangent operator is derived. Isoerror maps are generated to study the local accuracy of the numerical integration algorithm. Results from a series of numerical examples based on the simulation of drained triaxial tests are given to illustrate the accuracy and convergence properties of the algorithm, both at the local and at the global level. Finally an example is given of the simulation of a cyclic triaxial test to illustrate the improvement on accuracy caused by the use of a hyperelastic law into the constitutive equations, as opposed to the hypoelastic formulation initially adopted in the model. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.2445</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2009-02, Vol.77 (9), p.1201-1223 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_33210338 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Buildings. Public works Computational techniques Exact sciences and technology Fundamental areas of phenomenology (including applications) Geotechnics implicit algorithm Inelasticity (thermoplasticity, viscoplasticity...) Mathematical methods in physics numerical integration Physics Soil mechanics. Rocks mechanics soil model Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | A generalized midpoint algorithm for the integration of a generalized plasticity model for sands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20midpoint%20algorithm%20for%20the%20integration%20of%20a%20generalized%20plasticity%20model%20for%20sands&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mira,%20P.&rft.date=2009-02-26&rft.volume=77&rft.issue=9&rft.spage=1201&rft.epage=1223&rft.pages=1201-1223&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2445&rft_dat=%3Cproquest_cross%3E33210338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33210338&rft_id=info:pmid/&rfr_iscdi=true |