GROUP EXTENSIONS AND THE PRIMITIVE IDEAL SPACES OF TOEPLITZ ALGEBRAS

Let Γ be a totally ordered abelian group and I an order ideal in Γ. We prove a theorem which relates the structure of the Toeplitz algebra T(Γ) to the structure of the Toeplitz algebras T(I) and T(Γ/I). We then describe the primitive ideal space of the Toeplitz algebra T(Γ) when the set Σ(Γ) of orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2007-01, Vol.49 (1), p.81-92
Hauptverfasser: ADJI, SRIWULAN, RAEBURN, IAIN, ROSJANUARDI, RIZKY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue 1
container_start_page 81
container_title Glasgow mathematical journal
container_volume 49
creator ADJI, SRIWULAN
RAEBURN, IAIN
ROSJANUARDI, RIZKY
description Let Γ be a totally ordered abelian group and I an order ideal in Γ. We prove a theorem which relates the structure of the Toeplitz algebra T(Γ) to the structure of the Toeplitz algebras T(I) and T(Γ/I). We then describe the primitive ideal space of the Toeplitz algebra T(Γ) when the set Σ(Γ) of order ideals in Γ is well-ordered, and use this together with our structure theorem to deduce information about the ideal structure of T(Γ) when 0→ I→ Γ→ Γ/I→ 0 is a non-trivial group extension.
doi_str_mv 10.1017/S0017089507003436
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33209366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089507003436</cupid><sourcerecordid>33209366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-134ee2d0fda4e2dd3a7e71dd80b96e03b23ad22dbbf858673ec430688a62aafc3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLfFg7fofiSb5BjbbRNIk9ikpXhZNslGWvtltgX9925pUVC8zDDM8877MgDcYvSAEXYfc2Qq8nwHuQhRm7Iz0ME28y0H-bNz0DmsrcP-ElxpvTAjNVMH9IfjdJJBPit4kkdpksMg6cMi5DAbR6OoiKYcRn0exDDPgh7PYTqARcqzOCpeYBAP-dM4yK_BRSOXWt2cehdMBrzohVacDqNeEFuVTbydhamtFKlRU0vb9JpKV7m4rj1U-kwhWhIqa0Lqsmw8x2MuVZVNEfM8yYiUTUW74P54d9tu3vdK78Rqriu1XMq12uy1oJQgnzJmwLtf4GKzb9cmmyDYtX3iuwcIH6Gq3WjdqkZs2_lKtp8CI3F4qvjzVKOxjpq53qmPb4Fs34TJ6zqCDZ9FmEyTcOTkYmB4evKQq7Kd16_qJ8n_Ll_boIEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217492976</pqid></control><display><type>article</type><title>GROUP EXTENSIONS AND THE PRIMITIVE IDEAL SPACES OF TOEPLITZ ALGEBRAS</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>ADJI, SRIWULAN ; RAEBURN, IAIN ; ROSJANUARDI, RIZKY</creator><creatorcontrib>ADJI, SRIWULAN ; RAEBURN, IAIN ; ROSJANUARDI, RIZKY</creatorcontrib><description>Let Γ be a totally ordered abelian group and I an order ideal in Γ. We prove a theorem which relates the structure of the Toeplitz algebra T(Γ) to the structure of the Toeplitz algebras T(I) and T(Γ/I). We then describe the primitive ideal space of the Toeplitz algebra T(Γ) when the set Σ(Γ) of order ideals in Γ is well-ordered, and use this together with our structure theorem to deduce information about the ideal structure of T(Γ) when 0→ I→ Γ→ Γ/I→ 0 is a non-trivial group extension.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089507003436</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>46L55 ; Algebra ; Mathematical problems ; Theorems</subject><ispartof>Glasgow mathematical journal, 2007-01, Vol.49 (1), p.81-92</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 2007</rights><rights>Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-134ee2d0fda4e2dd3a7e71dd80b96e03b23ad22dbbf858673ec430688a62aafc3</citedby><cites>FETCH-LOGICAL-c428t-134ee2d0fda4e2dd3a7e71dd80b96e03b23ad22dbbf858673ec430688a62aafc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089507003436/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,4010,27900,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>ADJI, SRIWULAN</creatorcontrib><creatorcontrib>RAEBURN, IAIN</creatorcontrib><creatorcontrib>ROSJANUARDI, RIZKY</creatorcontrib><title>GROUP EXTENSIONS AND THE PRIMITIVE IDEAL SPACES OF TOEPLITZ ALGEBRAS</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>Let Γ be a totally ordered abelian group and I an order ideal in Γ. We prove a theorem which relates the structure of the Toeplitz algebra T(Γ) to the structure of the Toeplitz algebras T(I) and T(Γ/I). We then describe the primitive ideal space of the Toeplitz algebra T(Γ) when the set Σ(Γ) of order ideals in Γ is well-ordered, and use this together with our structure theorem to deduce information about the ideal structure of T(Γ) when 0→ I→ Γ→ Γ/I→ 0 is a non-trivial group extension.</description><subject>46L55</subject><subject>Algebra</subject><subject>Mathematical problems</subject><subject>Theorems</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLfFg7fofiSb5BjbbRNIk9ikpXhZNslGWvtltgX9925pUVC8zDDM8877MgDcYvSAEXYfc2Qq8nwHuQhRm7Iz0ME28y0H-bNz0DmsrcP-ElxpvTAjNVMH9IfjdJJBPit4kkdpksMg6cMi5DAbR6OoiKYcRn0exDDPgh7PYTqARcqzOCpeYBAP-dM4yK_BRSOXWt2cehdMBrzohVacDqNeEFuVTbydhamtFKlRU0vb9JpKV7m4rj1U-kwhWhIqa0Lqsmw8x2MuVZVNEfM8yYiUTUW74P54d9tu3vdK78Rqriu1XMq12uy1oJQgnzJmwLtf4GKzb9cmmyDYtX3iuwcIH6Gq3WjdqkZs2_lKtp8CI3F4qvjzVKOxjpq53qmPb4Fs34TJ6zqCDZ9FmEyTcOTkYmB4evKQq7Kd16_qJ8n_Ll_boIEY</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>ADJI, SRIWULAN</creator><creator>RAEBURN, IAIN</creator><creator>ROSJANUARDI, RIZKY</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200701</creationdate><title>GROUP EXTENSIONS AND THE PRIMITIVE IDEAL SPACES OF TOEPLITZ ALGEBRAS</title><author>ADJI, SRIWULAN ; RAEBURN, IAIN ; ROSJANUARDI, RIZKY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-134ee2d0fda4e2dd3a7e71dd80b96e03b23ad22dbbf858673ec430688a62aafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>46L55</topic><topic>Algebra</topic><topic>Mathematical problems</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ADJI, SRIWULAN</creatorcontrib><creatorcontrib>RAEBURN, IAIN</creatorcontrib><creatorcontrib>ROSJANUARDI, RIZKY</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ADJI, SRIWULAN</au><au>RAEBURN, IAIN</au><au>ROSJANUARDI, RIZKY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GROUP EXTENSIONS AND THE PRIMITIVE IDEAL SPACES OF TOEPLITZ ALGEBRAS</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2007-01</date><risdate>2007</risdate><volume>49</volume><issue>1</issue><spage>81</spage><epage>92</epage><pages>81-92</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>Let Γ be a totally ordered abelian group and I an order ideal in Γ. We prove a theorem which relates the structure of the Toeplitz algebra T(Γ) to the structure of the Toeplitz algebras T(I) and T(Γ/I). We then describe the primitive ideal space of the Toeplitz algebra T(Γ) when the set Σ(Γ) of order ideals in Γ is well-ordered, and use this together with our structure theorem to deduce information about the ideal structure of T(Γ) when 0→ I→ Γ→ Γ/I→ 0 is a non-trivial group extension.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089507003436</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-0895
ispartof Glasgow mathematical journal, 2007-01, Vol.49 (1), p.81-92
issn 0017-0895
1469-509X
language eng
recordid cdi_proquest_miscellaneous_33209366
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
subjects 46L55
Algebra
Mathematical problems
Theorems
title GROUP EXTENSIONS AND THE PRIMITIVE IDEAL SPACES OF TOEPLITZ ALGEBRAS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GROUP%20EXTENSIONS%20AND%20THE%20PRIMITIVE%20IDEAL%20SPACES%20OF%20TOEPLITZ%20ALGEBRAS&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=ADJI,%20SRIWULAN&rft.date=2007-01&rft.volume=49&rft.issue=1&rft.spage=81&rft.epage=92&rft.pages=81-92&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089507003436&rft_dat=%3Cproquest_cross%3E33209366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217492976&rft_id=info:pmid/&rft_cupid=10_1017_S0017089507003436&rfr_iscdi=true