Feasibility of probabilistic neural networks, Kohonen self-organizing maps and fuzzy clustering for source localization of ventricular focal arrhythmias from intravenous catheter measurements

: An important goal of clinical electrophysiological studies is estimation of the source of rhythm disturbances (arrhythmia) in the heart. 15% of ventricular arrhythmias are known to originate from the outer surface of the heart (epicardium). One localization approach targeting the epicardium uses m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 2009-02, Vol.26 (1), p.70-81
Hauptverfasser: Sunay, Ahmet Sertaç, Cunedioğlu, Uğur, Yιlmaz, Bülent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 70
container_title Expert systems
container_volume 26
creator Sunay, Ahmet Sertaç
Cunedioğlu, Uğur
Yιlmaz, Bülent
description : An important goal of clinical electrophysiological studies is estimation of the source of rhythm disturbances (arrhythmia) in the heart. 15% of ventricular arrhythmias are known to originate from the outer surface of the heart (epicardium). One localization approach targeting the epicardium uses multielectrode catheters placed in the coronary veins. However, epicardial measurement sites from these catheters are limited to locations reached via the coronary veins. This study investigates the feasibility of several pattern classification and neural network approaches for localization of the source of ventricular arrhythmias from sparse measurements acquired from within coronary veins. Specifically, we studied Kohonen self‐organizing maps and fuzzy C‐means clustering methods for the construction of the target vector in neural networks from experimental high‐resolution activation‐time patterns. We also studied two neural network techniques, probabilistic neural networks and backpropagation networks, for the training and test procedures. The results of this study showed that it was possible to localize the arrhythmia source in a relatively small region for approximately 70% of cases. This study, in general, showed that the combination of probabilistic neural networks, Kohonen self‐organizing maps and fuzzy C‐means clustering approaches is feasible in catheter‐based epicardial arrhythmia source localization.
doi_str_mv 10.1111/j.1468-0394.2008.00492.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33205054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33205054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4092-a4b46ad14fe9f2985470db10317f68ba358f3ea39fb44c360dd66b931c8deba13</originalsourceid><addsrcrecordid>eNqNkUGP1CAYhhujiePqfyAePNkKhdJy8GA2u6NxoomucT2RrxR2mKVlFlp3On_OvyZ1zB48yeWDfM_78cKbZYjggqT1ZlcQxpscU8GKEuOmwJiJsjg8ylYPjcfZCpec56wu8dPsWYw7jDGpa77Kfl1qiLa1zo4z8gbtg29hOcbRKjToKYBLZbz34Ta-Rh_91g96QFE7k_twA4M92uEG9bCPCIYOmel4nJFyUxx1WDrGBxT9FJRGzitw9gij9cNy1089jMGqyUFIWOohCGE7j9veQkQm-B7ZREDi_BSRgnGr01TUJ8tT0H2Sx-fZEwMu6hd_61n27fLi6vx9vvm8_nD-bpMrhkWZA2sZh44wo4UpRVOxGnctwZTUhjct0KoxVAMVpmVMUY67jvNWUKKaTrdA6Fn26jQ3fdDdpOMoexuVdg4GncxJSktc4Yol8OU_4C69fkjeJBFclJxVVYKaE6SCjzFoI_fB9hBmSbBcYpU7uaQnl_TkEqv8E6s8JOnbk_TeOj3_t05eXH_9kXZJn5_0KWF9eNBDuJW8pnUlv39aS7q-IhsmruUX-hsBbb8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196926455</pqid></control><display><type>article</type><title>Feasibility of probabilistic neural networks, Kohonen self-organizing maps and fuzzy clustering for source localization of ventricular focal arrhythmias from intravenous catheter measurements</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Sunay, Ahmet Sertaç ; Cunedioğlu, Uğur ; Yιlmaz, Bülent</creator><creatorcontrib>Sunay, Ahmet Sertaç ; Cunedioğlu, Uğur ; Yιlmaz, Bülent</creatorcontrib><description>: An important goal of clinical electrophysiological studies is estimation of the source of rhythm disturbances (arrhythmia) in the heart. 15% of ventricular arrhythmias are known to originate from the outer surface of the heart (epicardium). One localization approach targeting the epicardium uses multielectrode catheters placed in the coronary veins. However, epicardial measurement sites from these catheters are limited to locations reached via the coronary veins. This study investigates the feasibility of several pattern classification and neural network approaches for localization of the source of ventricular arrhythmias from sparse measurements acquired from within coronary veins. Specifically, we studied Kohonen self‐organizing maps and fuzzy C‐means clustering methods for the construction of the target vector in neural networks from experimental high‐resolution activation‐time patterns. We also studied two neural network techniques, probabilistic neural networks and backpropagation networks, for the training and test procedures. The results of this study showed that it was possible to localize the arrhythmia source in a relatively small region for approximately 70% of cases. This study, in general, showed that the combination of probabilistic neural networks, Kohonen self‐organizing maps and fuzzy C‐means clustering approaches is feasible in catheter‐based epicardial arrhythmia source localization.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/j.1468-0394.2008.00492.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Back propagation ; backpropagation networks ; Cardiac arrhythmia ; cardiac mapping ; Catheters ; fuzzy C-means clustering ; Heart ; intravenous catheters ; Kohonen self-organizing maps ; Localization ; Mapping ; Neural networks ; probabilistic neural networks ; Studies ; Veins &amp; arteries</subject><ispartof>Expert systems, 2009-02, Vol.26 (1), p.70-81</ispartof><rights>2009 The Authors. Journal Compilation © 2009 Blackwell Publishing Ltd</rights><rights>2009 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4092-a4b46ad14fe9f2985470db10317f68ba358f3ea39fb44c360dd66b931c8deba13</citedby><cites>FETCH-LOGICAL-c4092-a4b46ad14fe9f2985470db10317f68ba358f3ea39fb44c360dd66b931c8deba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1468-0394.2008.00492.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1468-0394.2008.00492.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Sunay, Ahmet Sertaç</creatorcontrib><creatorcontrib>Cunedioğlu, Uğur</creatorcontrib><creatorcontrib>Yιlmaz, Bülent</creatorcontrib><title>Feasibility of probabilistic neural networks, Kohonen self-organizing maps and fuzzy clustering for source localization of ventricular focal arrhythmias from intravenous catheter measurements</title><title>Expert systems</title><description>: An important goal of clinical electrophysiological studies is estimation of the source of rhythm disturbances (arrhythmia) in the heart. 15% of ventricular arrhythmias are known to originate from the outer surface of the heart (epicardium). One localization approach targeting the epicardium uses multielectrode catheters placed in the coronary veins. However, epicardial measurement sites from these catheters are limited to locations reached via the coronary veins. This study investigates the feasibility of several pattern classification and neural network approaches for localization of the source of ventricular arrhythmias from sparse measurements acquired from within coronary veins. Specifically, we studied Kohonen self‐organizing maps and fuzzy C‐means clustering methods for the construction of the target vector in neural networks from experimental high‐resolution activation‐time patterns. We also studied two neural network techniques, probabilistic neural networks and backpropagation networks, for the training and test procedures. The results of this study showed that it was possible to localize the arrhythmia source in a relatively small region for approximately 70% of cases. This study, in general, showed that the combination of probabilistic neural networks, Kohonen self‐organizing maps and fuzzy C‐means clustering approaches is feasible in catheter‐based epicardial arrhythmia source localization.</description><subject>Back propagation</subject><subject>backpropagation networks</subject><subject>Cardiac arrhythmia</subject><subject>cardiac mapping</subject><subject>Catheters</subject><subject>fuzzy C-means clustering</subject><subject>Heart</subject><subject>intravenous catheters</subject><subject>Kohonen self-organizing maps</subject><subject>Localization</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>probabilistic neural networks</subject><subject>Studies</subject><subject>Veins &amp; arteries</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkUGP1CAYhhujiePqfyAePNkKhdJy8GA2u6NxoomucT2RrxR2mKVlFlp3On_OvyZ1zB48yeWDfM_78cKbZYjggqT1ZlcQxpscU8GKEuOmwJiJsjg8ylYPjcfZCpec56wu8dPsWYw7jDGpa77Kfl1qiLa1zo4z8gbtg29hOcbRKjToKYBLZbz34Ta-Rh_91g96QFE7k_twA4M92uEG9bCPCIYOmel4nJFyUxx1WDrGBxT9FJRGzitw9gij9cNy1089jMGqyUFIWOohCGE7j9veQkQm-B7ZREDi_BSRgnGr01TUJ8tT0H2Sx-fZEwMu6hd_61n27fLi6vx9vvm8_nD-bpMrhkWZA2sZh44wo4UpRVOxGnctwZTUhjct0KoxVAMVpmVMUY67jvNWUKKaTrdA6Fn26jQ3fdDdpOMoexuVdg4GncxJSktc4Yol8OU_4C69fkjeJBFclJxVVYKaE6SCjzFoI_fB9hBmSbBcYpU7uaQnl_TkEqv8E6s8JOnbk_TeOj3_t05eXH_9kXZJn5_0KWF9eNBDuJW8pnUlv39aS7q-IhsmruUX-hsBbb8E</recordid><startdate>200902</startdate><enddate>200902</enddate><creator>Sunay, Ahmet Sertaç</creator><creator>Cunedioğlu, Uğur</creator><creator>Yιlmaz, Bülent</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200902</creationdate><title>Feasibility of probabilistic neural networks, Kohonen self-organizing maps and fuzzy clustering for source localization of ventricular focal arrhythmias from intravenous catheter measurements</title><author>Sunay, Ahmet Sertaç ; Cunedioğlu, Uğur ; Yιlmaz, Bülent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4092-a4b46ad14fe9f2985470db10317f68ba358f3ea39fb44c360dd66b931c8deba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Back propagation</topic><topic>backpropagation networks</topic><topic>Cardiac arrhythmia</topic><topic>cardiac mapping</topic><topic>Catheters</topic><topic>fuzzy C-means clustering</topic><topic>Heart</topic><topic>intravenous catheters</topic><topic>Kohonen self-organizing maps</topic><topic>Localization</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>probabilistic neural networks</topic><topic>Studies</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunay, Ahmet Sertaç</creatorcontrib><creatorcontrib>Cunedioğlu, Uğur</creatorcontrib><creatorcontrib>Yιlmaz, Bülent</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunay, Ahmet Sertaç</au><au>Cunedioğlu, Uğur</au><au>Yιlmaz, Bülent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility of probabilistic neural networks, Kohonen self-organizing maps and fuzzy clustering for source localization of ventricular focal arrhythmias from intravenous catheter measurements</atitle><jtitle>Expert systems</jtitle><date>2009-02</date><risdate>2009</risdate><volume>26</volume><issue>1</issue><spage>70</spage><epage>81</epage><pages>70-81</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>: An important goal of clinical electrophysiological studies is estimation of the source of rhythm disturbances (arrhythmia) in the heart. 15% of ventricular arrhythmias are known to originate from the outer surface of the heart (epicardium). One localization approach targeting the epicardium uses multielectrode catheters placed in the coronary veins. However, epicardial measurement sites from these catheters are limited to locations reached via the coronary veins. This study investigates the feasibility of several pattern classification and neural network approaches for localization of the source of ventricular arrhythmias from sparse measurements acquired from within coronary veins. Specifically, we studied Kohonen self‐organizing maps and fuzzy C‐means clustering methods for the construction of the target vector in neural networks from experimental high‐resolution activation‐time patterns. We also studied two neural network techniques, probabilistic neural networks and backpropagation networks, for the training and test procedures. The results of this study showed that it was possible to localize the arrhythmia source in a relatively small region for approximately 70% of cases. This study, in general, showed that the combination of probabilistic neural networks, Kohonen self‐organizing maps and fuzzy C‐means clustering approaches is feasible in catheter‐based epicardial arrhythmia source localization.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0394.2008.00492.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2009-02, Vol.26 (1), p.70-81
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_miscellaneous_33205054
source Business Source Complete; Wiley Online Library All Journals
subjects Back propagation
backpropagation networks
Cardiac arrhythmia
cardiac mapping
Catheters
fuzzy C-means clustering
Heart
intravenous catheters
Kohonen self-organizing maps
Localization
Mapping
Neural networks
probabilistic neural networks
Studies
Veins & arteries
title Feasibility of probabilistic neural networks, Kohonen self-organizing maps and fuzzy clustering for source localization of ventricular focal arrhythmias from intravenous catheter measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20of%20probabilistic%20neural%20networks,%20Kohonen%20self-organizing%20maps%20and%20fuzzy%20clustering%20for%20source%20localization%20of%20ventricular%20focal%20arrhythmias%20from%20intravenous%20catheter%20measurements&rft.jtitle=Expert%20systems&rft.au=Sunay,%20Ahmet%20Serta%C3%A7&rft.date=2009-02&rft.volume=26&rft.issue=1&rft.spage=70&rft.epage=81&rft.pages=70-81&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/j.1468-0394.2008.00492.x&rft_dat=%3Cproquest_cross%3E33205054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196926455&rft_id=info:pmid/&rfr_iscdi=true