Vacancy Engineering – An Ultra-Low Thermal Budget Method for High-Concentration 'Diffusionless' Implantation Doping

This paper reviews the physics and the potential application of ion-implanted vacancies for high-performance B-doped ultra-shallow junctions. By treatment of silicon films with vacancygenerating implants prior to boron implantation, electrically active boron concentrations approaching 1021 cm-3 can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2008-03, Vol.573-574, p.295-304
Hauptverfasser: Colombeau, Benjamin, Cowern, Nicholas E.B., Sealy, Brian J., Smith, Andrew J., Lerch, Wilfried, Bennett, Nicholas S., Paul, Silke, Pakfar, Ardechir, Webb, Roger P., Gwilliam, Russell
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue
container_start_page 295
container_title Materials science forum
container_volume 573-574
creator Colombeau, Benjamin
Cowern, Nicholas E.B.
Sealy, Brian J.
Smith, Andrew J.
Lerch, Wilfried
Bennett, Nicholas S.
Paul, Silke
Pakfar, Ardechir
Webb, Roger P.
Gwilliam, Russell
description This paper reviews the physics and the potential application of ion-implanted vacancies for high-performance B-doped ultra-shallow junctions. By treatment of silicon films with vacancygenerating implants prior to boron implantation, electrically active boron concentrations approaching 1021 cm-3 can be achieved by Rapid Thermal Annealing at low temperatures, without the use of preamorphisation. Source/drain (S/D) junctions formed by advanced vacancy engineering implants (VEI) are activated far above solubility. Furthermore, in the case of appropriately engineered thin silicon films, this activation is stable with respect to deactivation and the doping profile is practically diffusionless. Sheet resistance Rs is predicted to stay almost constant with decreasing junction depth Xj, thus potentially outperforming other S/D engineering approaches at the ‘32 nm node’ and beyond.
doi_str_mv 10.4028/www.scientific.net/MSF.573-574.295
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33195510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33195510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2865-e1b545039e6529bc6c79912e4bac52b3fce57f5a81ab6c1ae3ac42217528b0fc3</originalsourceid><addsrcrecordid>eNqVkNtKAzEQhoMoWA_vkCsFYdcku9nDpbbVFipeeLgN2ThpI9ukJlmKd76Db-iTGKngtRfDDMzPP_N_CF1QkpeENZfb7TYPyoCNRhuVW4iXdw83Oa-LjNdlzlq-h0a0qljW1pztoxFhnGe8rKtDdBTCKyEFbWg1QsOzVNKqdzy1S2MBvLFL_PXxia8sfuqjl9nCbfHjCvxa9vh6eFlCxHcQV-4Fa-fxzCxX2dhZlV7xMhpn8fnEaD2ENPYQwjmerze9tHG3nLhNunCCDrTsA5z-9mP0dDN9HM-yxf3tfHy1yBRrKp4B7XjJSdFCxVnbqUrVbUsZlJ1UnHWFVsBrzWVDZVcpKqGQqmSMpshNR7QqjtHZznfj3dsAIYq1CQr69A-4IYiioC3nlCTh9U6ovAvBgxYbb9bSvwtKxA9xkYiLP-IiEReJuEjEU5UiEU8mk51JImFDBLUSr27wNiX8j8035oeWuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33195510</pqid></control><display><type>article</type><title>Vacancy Engineering – An Ultra-Low Thermal Budget Method for High-Concentration 'Diffusionless' Implantation Doping</title><source>Scientific.net Journals</source><creator>Colombeau, Benjamin ; Cowern, Nicholas E.B. ; Sealy, Brian J. ; Smith, Andrew J. ; Lerch, Wilfried ; Bennett, Nicholas S. ; Paul, Silke ; Pakfar, Ardechir ; Webb, Roger P. ; Gwilliam, Russell</creator><creatorcontrib>Colombeau, Benjamin ; Cowern, Nicholas E.B. ; Sealy, Brian J. ; Smith, Andrew J. ; Lerch, Wilfried ; Bennett, Nicholas S. ; Paul, Silke ; Pakfar, Ardechir ; Webb, Roger P. ; Gwilliam, Russell</creatorcontrib><description>This paper reviews the physics and the potential application of ion-implanted vacancies for high-performance B-doped ultra-shallow junctions. By treatment of silicon films with vacancygenerating implants prior to boron implantation, electrically active boron concentrations approaching 1021 cm-3 can be achieved by Rapid Thermal Annealing at low temperatures, without the use of preamorphisation. Source/drain (S/D) junctions formed by advanced vacancy engineering implants (VEI) are activated far above solubility. Furthermore, in the case of appropriately engineered thin silicon films, this activation is stable with respect to deactivation and the doping profile is practically diffusionless. Sheet resistance Rs is predicted to stay almost constant with decreasing junction depth Xj, thus potentially outperforming other S/D engineering approaches at the ‘32 nm node’ and beyond.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.573-574.295</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2008-03, Vol.573-574, p.295-304</ispartof><rights>2008 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2865-e1b545039e6529bc6c79912e4bac52b3fce57f5a81ab6c1ae3ac42217528b0fc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/722?width=600</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Colombeau, Benjamin</creatorcontrib><creatorcontrib>Cowern, Nicholas E.B.</creatorcontrib><creatorcontrib>Sealy, Brian J.</creatorcontrib><creatorcontrib>Smith, Andrew J.</creatorcontrib><creatorcontrib>Lerch, Wilfried</creatorcontrib><creatorcontrib>Bennett, Nicholas S.</creatorcontrib><creatorcontrib>Paul, Silke</creatorcontrib><creatorcontrib>Pakfar, Ardechir</creatorcontrib><creatorcontrib>Webb, Roger P.</creatorcontrib><creatorcontrib>Gwilliam, Russell</creatorcontrib><title>Vacancy Engineering – An Ultra-Low Thermal Budget Method for High-Concentration 'Diffusionless' Implantation Doping</title><title>Materials science forum</title><description>This paper reviews the physics and the potential application of ion-implanted vacancies for high-performance B-doped ultra-shallow junctions. By treatment of silicon films with vacancygenerating implants prior to boron implantation, electrically active boron concentrations approaching 1021 cm-3 can be achieved by Rapid Thermal Annealing at low temperatures, without the use of preamorphisation. Source/drain (S/D) junctions formed by advanced vacancy engineering implants (VEI) are activated far above solubility. Furthermore, in the case of appropriately engineered thin silicon films, this activation is stable with respect to deactivation and the doping profile is practically diffusionless. Sheet resistance Rs is predicted to stay almost constant with decreasing junction depth Xj, thus potentially outperforming other S/D engineering approaches at the ‘32 nm node’ and beyond.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqVkNtKAzEQhoMoWA_vkCsFYdcku9nDpbbVFipeeLgN2ThpI9ukJlmKd76Db-iTGKngtRfDDMzPP_N_CF1QkpeENZfb7TYPyoCNRhuVW4iXdw83Oa-LjNdlzlq-h0a0qljW1pztoxFhnGe8rKtDdBTCKyEFbWg1QsOzVNKqdzy1S2MBvLFL_PXxia8sfuqjl9nCbfHjCvxa9vh6eFlCxHcQV-4Fa-fxzCxX2dhZlV7xMhpn8fnEaD2ENPYQwjmerze9tHG3nLhNunCCDrTsA5z-9mP0dDN9HM-yxf3tfHy1yBRrKp4B7XjJSdFCxVnbqUrVbUsZlJ1UnHWFVsBrzWVDZVcpKqGQqmSMpshNR7QqjtHZznfj3dsAIYq1CQr69A-4IYiioC3nlCTh9U6ovAvBgxYbb9bSvwtKxA9xkYiLP-IiEReJuEjEU5UiEU8mk51JImFDBLUSr27wNiX8j8035oeWuQ</recordid><startdate>20080324</startdate><enddate>20080324</enddate><creator>Colombeau, Benjamin</creator><creator>Cowern, Nicholas E.B.</creator><creator>Sealy, Brian J.</creator><creator>Smith, Andrew J.</creator><creator>Lerch, Wilfried</creator><creator>Bennett, Nicholas S.</creator><creator>Paul, Silke</creator><creator>Pakfar, Ardechir</creator><creator>Webb, Roger P.</creator><creator>Gwilliam, Russell</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080324</creationdate><title>Vacancy Engineering – An Ultra-Low Thermal Budget Method for High-Concentration 'Diffusionless' Implantation Doping</title><author>Colombeau, Benjamin ; Cowern, Nicholas E.B. ; Sealy, Brian J. ; Smith, Andrew J. ; Lerch, Wilfried ; Bennett, Nicholas S. ; Paul, Silke ; Pakfar, Ardechir ; Webb, Roger P. ; Gwilliam, Russell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2865-e1b545039e6529bc6c79912e4bac52b3fce57f5a81ab6c1ae3ac42217528b0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombeau, Benjamin</creatorcontrib><creatorcontrib>Cowern, Nicholas E.B.</creatorcontrib><creatorcontrib>Sealy, Brian J.</creatorcontrib><creatorcontrib>Smith, Andrew J.</creatorcontrib><creatorcontrib>Lerch, Wilfried</creatorcontrib><creatorcontrib>Bennett, Nicholas S.</creatorcontrib><creatorcontrib>Paul, Silke</creatorcontrib><creatorcontrib>Pakfar, Ardechir</creatorcontrib><creatorcontrib>Webb, Roger P.</creatorcontrib><creatorcontrib>Gwilliam, Russell</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombeau, Benjamin</au><au>Cowern, Nicholas E.B.</au><au>Sealy, Brian J.</au><au>Smith, Andrew J.</au><au>Lerch, Wilfried</au><au>Bennett, Nicholas S.</au><au>Paul, Silke</au><au>Pakfar, Ardechir</au><au>Webb, Roger P.</au><au>Gwilliam, Russell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacancy Engineering – An Ultra-Low Thermal Budget Method for High-Concentration 'Diffusionless' Implantation Doping</atitle><jtitle>Materials science forum</jtitle><date>2008-03-24</date><risdate>2008</risdate><volume>573-574</volume><spage>295</spage><epage>304</epage><pages>295-304</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>This paper reviews the physics and the potential application of ion-implanted vacancies for high-performance B-doped ultra-shallow junctions. By treatment of silicon films with vacancygenerating implants prior to boron implantation, electrically active boron concentrations approaching 1021 cm-3 can be achieved by Rapid Thermal Annealing at low temperatures, without the use of preamorphisation. Source/drain (S/D) junctions formed by advanced vacancy engineering implants (VEI) are activated far above solubility. Furthermore, in the case of appropriately engineered thin silicon films, this activation is stable with respect to deactivation and the doping profile is practically diffusionless. Sheet resistance Rs is predicted to stay almost constant with decreasing junction depth Xj, thus potentially outperforming other S/D engineering approaches at the ‘32 nm node’ and beyond.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.573-574.295</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2008-03, Vol.573-574, p.295-304
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_33195510
source Scientific.net Journals
title Vacancy Engineering – An Ultra-Low Thermal Budget Method for High-Concentration 'Diffusionless' Implantation Doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacancy%20Engineering%20%E2%80%93%20An%20Ultra-Low%20Thermal%20Budget%20Method%20for%20High-Concentration%20'Diffusionless'%20Implantation%20Doping&rft.jtitle=Materials%20science%20forum&rft.au=Colombeau,%20Benjamin&rft.date=2008-03-24&rft.volume=573-574&rft.spage=295&rft.epage=304&rft.pages=295-304&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.573-574.295&rft_dat=%3Cproquest_cross%3E33195510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33195510&rft_id=info:pmid/&rfr_iscdi=true