Flexural vibrations of a moving rod

The problem of the transverse natural vibrations of part of a rod between two coaxially fixed guides, moving with an arbitrary constant velocity, is investigated. The conditions of rigid clamping are taken as the boundary conditions. Additional shear stresses, due to longitudinal tension or compress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics and mechanics 2008, Vol.72 (5), p.550-560
Hauptverfasser: Akulenko, L.D., Nesterov, S.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 5
container_start_page 550
container_title Journal of applied mathematics and mechanics
container_volume 72
creator Akulenko, L.D.
Nesterov, S.V.
description The problem of the transverse natural vibrations of part of a rod between two coaxially fixed guides, moving with an arbitrary constant velocity, is investigated. The conditions of rigid clamping are taken as the boundary conditions. Additional shear stresses, due to longitudinal tension or compression are taken into account. Relations defining the natural frequencies and forms are constructed in an exact formulation by Fourier method. The dependence of the natural frequencies and forms of the lowest vibration modes on the rate of displacement, unknown in the literature, are constructed, and their features are established. A modelling and animation of unusual wave motions of the rod are presented. The main characteristics for the higher vibration modes are constructed.
doi_str_mv 10.1016/j.jappmathmech.2008.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33181648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892808001329</els_id><sourcerecordid>33181648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3e08fdc9e611ac46fc3c64a791585edb38435522cc05510ba4f1b38b04028cd43</originalsourceid><addsrcrecordid>eNqNkEFPwzAMhSMEEmPwHyoQ3FripOkybggYIE3iAucodVOWqm1K0k3w78m0Ce3I6VnW52f7EXIJNAMKxW2TNXoYOj2uOoOrjFEqM4AsyhGZUMoglXMmjw_qU3IWQkMpzGghJ-Rq0ZrvtddtsrGl16N1fUhcneikcxvbfybeVefkpNZtMBd7nZKPxdP7w0u6fHt-fbhfpsilGFNuqKwrnJsCQGNe1MixyPVsDkIKU5Vc5lwIxhCpEEBLndcQmyXNKZNY5XxKbna-g3dfaxNG1dmApm11b9w6KM5BQpHLCN7tQPQuBG9qNXjbaf-jgKptLqpRh7mobS4KQEWJw9f7LTqgbmuve7Thz4HBjLF4XuQed5yJL2-s8SqgNT2aynqDo6qc_c-6X3eZfiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33181648</pqid></control><display><type>article</type><title>Flexural vibrations of a moving rod</title><source>Elsevier ScienceDirect Journals</source><creator>Akulenko, L.D. ; Nesterov, S.V.</creator><creatorcontrib>Akulenko, L.D. ; Nesterov, S.V.</creatorcontrib><description>The problem of the transverse natural vibrations of part of a rod between two coaxially fixed guides, moving with an arbitrary constant velocity, is investigated. The conditions of rigid clamping are taken as the boundary conditions. Additional shear stresses, due to longitudinal tension or compression are taken into account. Relations defining the natural frequencies and forms are constructed in an exact formulation by Fourier method. The dependence of the natural frequencies and forms of the lowest vibration modes on the rate of displacement, unknown in the literature, are constructed, and their features are established. A modelling and animation of unusual wave motions of the rod are presented. The main characteristics for the higher vibration modes are constructed.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2008.11.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of applied mathematics and mechanics, 2008, Vol.72 (5), p.550-560</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3e08fdc9e611ac46fc3c64a791585edb38435522cc05510ba4f1b38b04028cd43</citedby><cites>FETCH-LOGICAL-c385t-3e08fdc9e611ac46fc3c64a791585edb38435522cc05510ba4f1b38b04028cd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021892808001329$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21722510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Akulenko, L.D.</creatorcontrib><creatorcontrib>Nesterov, S.V.</creatorcontrib><title>Flexural vibrations of a moving rod</title><title>Journal of applied mathematics and mechanics</title><description>The problem of the transverse natural vibrations of part of a rod between two coaxially fixed guides, moving with an arbitrary constant velocity, is investigated. The conditions of rigid clamping are taken as the boundary conditions. Additional shear stresses, due to longitudinal tension or compression are taken into account. Relations defining the natural frequencies and forms are constructed in an exact formulation by Fourier method. The dependence of the natural frequencies and forms of the lowest vibration modes on the rate of displacement, unknown in the literature, are constructed, and their features are established. A modelling and animation of unusual wave motions of the rod are presented. The main characteristics for the higher vibration modes are constructed.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkEFPwzAMhSMEEmPwHyoQ3FripOkybggYIE3iAucodVOWqm1K0k3w78m0Ce3I6VnW52f7EXIJNAMKxW2TNXoYOj2uOoOrjFEqM4AsyhGZUMoglXMmjw_qU3IWQkMpzGghJ-Rq0ZrvtddtsrGl16N1fUhcneikcxvbfybeVefkpNZtMBd7nZKPxdP7w0u6fHt-fbhfpsilGFNuqKwrnJsCQGNe1MixyPVsDkIKU5Vc5lwIxhCpEEBLndcQmyXNKZNY5XxKbna-g3dfaxNG1dmApm11b9w6KM5BQpHLCN7tQPQuBG9qNXjbaf-jgKptLqpRh7mobS4KQEWJw9f7LTqgbmuve7Thz4HBjLF4XuQed5yJL2-s8SqgNT2aynqDo6qc_c-6X3eZfiE</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Akulenko, L.D.</creator><creator>Nesterov, S.V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2008</creationdate><title>Flexural vibrations of a moving rod</title><author>Akulenko, L.D. ; Nesterov, S.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3e08fdc9e611ac46fc3c64a791585edb38435522cc05510ba4f1b38b04028cd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akulenko, L.D.</creatorcontrib><creatorcontrib>Nesterov, S.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akulenko, L.D.</au><au>Nesterov, S.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexural vibrations of a moving rod</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2008</date><risdate>2008</risdate><volume>72</volume><issue>5</issue><spage>550</spage><epage>560</epage><pages>550-560</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>The problem of the transverse natural vibrations of part of a rod between two coaxially fixed guides, moving with an arbitrary constant velocity, is investigated. The conditions of rigid clamping are taken as the boundary conditions. Additional shear stresses, due to longitudinal tension or compression are taken into account. Relations defining the natural frequencies and forms are constructed in an exact formulation by Fourier method. The dependence of the natural frequencies and forms of the lowest vibration modes on the rate of displacement, unknown in the literature, are constructed, and their features are established. A modelling and animation of unusual wave motions of the rod are presented. The main characteristics for the higher vibration modes are constructed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2008.11.008</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8928
ispartof Journal of applied mathematics and mechanics, 2008, Vol.72 (5), p.550-560
issn 0021-8928
0021-8928
language eng
recordid cdi_proquest_miscellaneous_33181648
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Flexural vibrations of a moving rod
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexural%20vibrations%20of%20a%20moving%20rod&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Akulenko,%20L.D.&rft.date=2008&rft.volume=72&rft.issue=5&rft.spage=550&rft.epage=560&rft.pages=550-560&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2008.11.008&rft_dat=%3Cproquest_cross%3E33181648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33181648&rft_id=info:pmid/&rft_els_id=S0021892808001329&rfr_iscdi=true