Effect of variable slip boundary conditions on flows of pressure driven non-Newtonian fluids
In microfluidic devices it has been suggested a scheme for enhancing the mixing of two fluids is to use patterned, slip boundary conditions. This has been shown to induce significant transverse flow for Newtonian fluids [S.C. Hendy, M. Jasperse, J. Burnell, Effect of patterned slip on micro- and nan...
Gespeichert in:
Veröffentlicht in: | Journal of non-Newtonian fluid mechanics 2009-04, Vol.157 (3), p.197-206 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 3 |
container_start_page | 197 |
container_title | Journal of non-Newtonian fluid mechanics |
container_volume | 157 |
creator | Pereira, G.G. |
description | In microfluidic devices it has been suggested a scheme for enhancing the mixing of two fluids is to use patterned, slip boundary conditions. This has been shown to induce significant transverse flow for Newtonian fluids [S.C. Hendy, M. Jasperse, J. Burnell, Effect of patterned slip on micro- and nanofluidic flows, Phys. Rev. E 72 (2005) 016303]. Here we study the effect of patterned slip on non-Newtonian fluids. Using a power-law model it is shown for shear-thickening fluids patterned slip can induce significant transverse flows comparable in size to those produced for Newtonian fluids. However, for shear-thinning fluids this transverse flow is suppressed. We predict a convenient way to increase the transverse flow for shear-thinning fluids is to use a patterned slip boundary condition coupled to a sinusoidally time-varying pressure gradient. This system is studied using a simple linearized White–Metzner model which has a power-law viscosity function [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, New York, 1987]. In this case it is shown the two variations combine to produce transverse flow, which can be increased by increasing the frequency of the sinusoidal time-dependent fluctuation. |
doi_str_mv | 10.1016/j.jnnfm.2008.11.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33178175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025708002139</els_id><sourcerecordid>33178175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ab1d01d8758c3a50636288f8d92292654e9f3424187cf9c282de8ec90e0a61953</originalsourceid><addsrcrecordid>eNp9kLFOHDEQhi2USLkQniCNG9LtxmPv2t6CIkIEIqGkCR2S5bPHkk979mHvHuLt2c0hykwzzffP6P8I-QqsBQby-67dpRT2LWdMtwAtA35GNqCVaLgU8IFsmFCqYbxXn8jnWndsmV7IDXm8CQHdRHOgR1ui3Y5I6xgPdJvn5G15oS4nH6eYU6U50TDm57rSh4K1zgWpL_GIiaacmt_4POUU7YrN0dcv5GOwY8WLt31OHn7e_L2-a-7_3P66_nHfOCG7qbFb8Ay8Vr12wvZMCsm1DtoPnA9c9h0OQXS8W_q4MDiuuUeNbmDIrIShF-fk2-nuoeSnGetk9rE6HEebMM_VCAFKg1pBcQJdybUWDOZQ4n5paYCZ1aTZmX8mzWrSAJjF5JK6fDtvq7NjKDa5WN-jHECpQXYLd3XicOl6jFhMdRGTQx_L4tj4HP_75xVYC4rB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33178175</pqid></control><display><type>article</type><title>Effect of variable slip boundary conditions on flows of pressure driven non-Newtonian fluids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Pereira, G.G.</creator><creatorcontrib>Pereira, G.G.</creatorcontrib><description>In microfluidic devices it has been suggested a scheme for enhancing the mixing of two fluids is to use patterned, slip boundary conditions. This has been shown to induce significant transverse flow for Newtonian fluids [S.C. Hendy, M. Jasperse, J. Burnell, Effect of patterned slip on micro- and nanofluidic flows, Phys. Rev. E 72 (2005) 016303]. Here we study the effect of patterned slip on non-Newtonian fluids. Using a power-law model it is shown for shear-thickening fluids patterned slip can induce significant transverse flows comparable in size to those produced for Newtonian fluids. However, for shear-thinning fluids this transverse flow is suppressed. We predict a convenient way to increase the transverse flow for shear-thinning fluids is to use a patterned slip boundary condition coupled to a sinusoidally time-varying pressure gradient. This system is studied using a simple linearized White–Metzner model which has a power-law viscosity function [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, New York, 1987]. In this case it is shown the two variations combine to produce transverse flow, which can be increased by increasing the frequency of the sinusoidal time-dependent fluctuation.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2008.11.012</identifier><identifier>CODEN: JNFMDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied fluid mechanics ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Non-Newtonian fluid ; Non-newtonian fluid flows ; Perturbation expansion ; Physics ; Slip ; Visco-elastic</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2009-04, Vol.157 (3), p.197-206</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ab1d01d8758c3a50636288f8d92292654e9f3424187cf9c282de8ec90e0a61953</citedby><cites>FETCH-LOGICAL-c364t-ab1d01d8758c3a50636288f8d92292654e9f3424187cf9c282de8ec90e0a61953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnnfm.2008.11.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21177964$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereira, G.G.</creatorcontrib><title>Effect of variable slip boundary conditions on flows of pressure driven non-Newtonian fluids</title><title>Journal of non-Newtonian fluid mechanics</title><description>In microfluidic devices it has been suggested a scheme for enhancing the mixing of two fluids is to use patterned, slip boundary conditions. This has been shown to induce significant transverse flow for Newtonian fluids [S.C. Hendy, M. Jasperse, J. Burnell, Effect of patterned slip on micro- and nanofluidic flows, Phys. Rev. E 72 (2005) 016303]. Here we study the effect of patterned slip on non-Newtonian fluids. Using a power-law model it is shown for shear-thickening fluids patterned slip can induce significant transverse flows comparable in size to those produced for Newtonian fluids. However, for shear-thinning fluids this transverse flow is suppressed. We predict a convenient way to increase the transverse flow for shear-thinning fluids is to use a patterned slip boundary condition coupled to a sinusoidally time-varying pressure gradient. This system is studied using a simple linearized White–Metzner model which has a power-law viscosity function [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, New York, 1987]. In this case it is shown the two variations combine to produce transverse flow, which can be increased by increasing the frequency of the sinusoidal time-dependent fluctuation.</description><subject>Applied fluid mechanics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Non-Newtonian fluid</subject><subject>Non-newtonian fluid flows</subject><subject>Perturbation expansion</subject><subject>Physics</subject><subject>Slip</subject><subject>Visco-elastic</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOHDEQhi2USLkQniCNG9LtxmPv2t6CIkIEIqGkCR2S5bPHkk979mHvHuLt2c0hykwzzffP6P8I-QqsBQby-67dpRT2LWdMtwAtA35GNqCVaLgU8IFsmFCqYbxXn8jnWndsmV7IDXm8CQHdRHOgR1ui3Y5I6xgPdJvn5G15oS4nH6eYU6U50TDm57rSh4K1zgWpL_GIiaacmt_4POUU7YrN0dcv5GOwY8WLt31OHn7e_L2-a-7_3P66_nHfOCG7qbFb8Ay8Vr12wvZMCsm1DtoPnA9c9h0OQXS8W_q4MDiuuUeNbmDIrIShF-fk2-nuoeSnGetk9rE6HEebMM_VCAFKg1pBcQJdybUWDOZQ4n5paYCZ1aTZmX8mzWrSAJjF5JK6fDtvq7NjKDa5WN-jHECpQXYLd3XicOl6jFhMdRGTQx_L4tj4HP_75xVYC4rB</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Pereira, G.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Effect of variable slip boundary conditions on flows of pressure driven non-Newtonian fluids</title><author>Pereira, G.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ab1d01d8758c3a50636288f8d92292654e9f3424187cf9c282de8ec90e0a61953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied fluid mechanics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Non-Newtonian fluid</topic><topic>Non-newtonian fluid flows</topic><topic>Perturbation expansion</topic><topic>Physics</topic><topic>Slip</topic><topic>Visco-elastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, G.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, G.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of variable slip boundary conditions on flows of pressure driven non-Newtonian fluids</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>157</volume><issue>3</issue><spage>197</spage><epage>206</epage><pages>197-206</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><coden>JNFMDI</coden><abstract>In microfluidic devices it has been suggested a scheme for enhancing the mixing of two fluids is to use patterned, slip boundary conditions. This has been shown to induce significant transverse flow for Newtonian fluids [S.C. Hendy, M. Jasperse, J. Burnell, Effect of patterned slip on micro- and nanofluidic flows, Phys. Rev. E 72 (2005) 016303]. Here we study the effect of patterned slip on non-Newtonian fluids. Using a power-law model it is shown for shear-thickening fluids patterned slip can induce significant transverse flows comparable in size to those produced for Newtonian fluids. However, for shear-thinning fluids this transverse flow is suppressed. We predict a convenient way to increase the transverse flow for shear-thinning fluids is to use a patterned slip boundary condition coupled to a sinusoidally time-varying pressure gradient. This system is studied using a simple linearized White–Metzner model which has a power-law viscosity function [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, New York, 1987]. In this case it is shown the two variations combine to produce transverse flow, which can be increased by increasing the frequency of the sinusoidal time-dependent fluctuation.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2008.11.012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0257 |
ispartof | Journal of non-Newtonian fluid mechanics, 2009-04, Vol.157 (3), p.197-206 |
issn | 0377-0257 1873-2631 |
language | eng |
recordid | cdi_proquest_miscellaneous_33178175 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied fluid mechanics Exact sciences and technology Fluid dynamics Fluidics Fundamental areas of phenomenology (including applications) Non-Newtonian fluid Non-newtonian fluid flows Perturbation expansion Physics Slip Visco-elastic |
title | Effect of variable slip boundary conditions on flows of pressure driven non-Newtonian fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20variable%20slip%20boundary%20conditions%20on%20flows%20of%20pressure%20driven%20non-Newtonian%20fluids&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Pereira,%20G.G.&rft.date=2009-04-01&rft.volume=157&rft.issue=3&rft.spage=197&rft.epage=206&rft.pages=197-206&rft.issn=0377-0257&rft.eissn=1873-2631&rft.coden=JNFMDI&rft_id=info:doi/10.1016/j.jnnfm.2008.11.012&rft_dat=%3Cproquest_cross%3E33178175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33178175&rft_id=info:pmid/&rft_els_id=S0377025708002139&rfr_iscdi=true |