Renewable hydrogen production
The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasol...
Gespeichert in:
Veröffentlicht in: | International Journal of Energy Research 2008-04, Vol.32 (5), p.379-407 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 5 |
container_start_page | 379 |
container_title | International Journal of Energy Research |
container_volume | 32 |
creator | Turner, John Sverdrup, George Mann, Margaret K. Maness, Pin-Ching Kroposki, Ben Ghirardi, Maria Evans, Robert J. Blake, Dan |
description | The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/er.1372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_33128908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19710892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs4p_gXC8KAH6cyPtmmOOuaUDYWhuFtIkxdX7dqZdMz992Z0eJOd3uF9eHzfF6FzgvsEY3oLrk8YpweoQ7AQESHx7BB1MEtZJDCfHaMT7z8xDjvCO-hiChWsVV5Cb74xrv6Aqrd0tVnppqirU3RkVenhbDe76O1h-Dp4jCYvo6fB3STScSZopGmSa8HTWGdcaQY0zm2SK0aN5dbGNjNZnFBDuTA5xwYMzTOeQohkMmWtZl102d6tfVNIr4sG9FzXVQW6kYRQEgsR0FWLQr7vFfhGLgqvoSxVBfXKS8YIzQTO9kOaUhz0XkgEJzg8GOB1C7WrvXdg5dIVC-U2kmC5bV2Ck9vWg7xp5booYfMfk8PpTketLnwDP39auS-ZcsYT-f48kmI8jscDfi8p-wWG4o-M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19710892</pqid></control><display><type>article</type><title>Renewable hydrogen production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Turner, John ; Sverdrup, George ; Mann, Margaret K. ; Maness, Pin-Ching ; Kroposki, Ben ; Ghirardi, Maria ; Evans, Robert J. ; Blake, Dan</creator><creatorcontrib>Turner, John ; Sverdrup, George ; Mann, Margaret K. ; Maness, Pin-Ching ; Kroposki, Ben ; Ghirardi, Maria ; Evans, Robert J. ; Blake, Dan ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.1372</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>08 HYDROGEN ; 09 BIOMASS FUELS ; BASIC BIOLOGICAL SCIENCES ; biomass ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; electrolysis ; Hydrogen ; hydrogen production ; photobiology ; renewable energy ; solar ; wind energy</subject><ispartof>International Journal of Energy Research, 2008-04, Vol.32 (5), p.379-407</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</citedby><cites>FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.1372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.1372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1121499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, John</creatorcontrib><creatorcontrib>Sverdrup, George</creatorcontrib><creatorcontrib>Mann, Margaret K.</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Kroposki, Ben</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Evans, Robert J.</creatorcontrib><creatorcontrib>Blake, Dan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Renewable hydrogen production</title><title>International Journal of Energy Research</title><addtitle>Int. J. Energy Res</addtitle><description>The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>08 HYDROGEN</subject><subject>09 BIOMASS FUELS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biomass</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>electrolysis</subject><subject>Hydrogen</subject><subject>hydrogen production</subject><subject>photobiology</subject><subject>renewable energy</subject><subject>solar</subject><subject>wind energy</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgCs4p_gXC8KAH6cyPtmmOOuaUDYWhuFtIkxdX7dqZdMz992Z0eJOd3uF9eHzfF6FzgvsEY3oLrk8YpweoQ7AQESHx7BB1MEtZJDCfHaMT7z8xDjvCO-hiChWsVV5Cb74xrv6Aqrd0tVnppqirU3RkVenhbDe76O1h-Dp4jCYvo6fB3STScSZopGmSa8HTWGdcaQY0zm2SK0aN5dbGNjNZnFBDuTA5xwYMzTOeQohkMmWtZl102d6tfVNIr4sG9FzXVQW6kYRQEgsR0FWLQr7vFfhGLgqvoSxVBfXKS8YIzQTO9kOaUhz0XkgEJzg8GOB1C7WrvXdg5dIVC-U2kmC5bV2Ck9vWg7xp5booYfMfk8PpTketLnwDP39auS-ZcsYT-f48kmI8jscDfi8p-wWG4o-M</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Turner, John</creator><creator>Sverdrup, George</creator><creator>Mann, Margaret K.</creator><creator>Maness, Pin-Ching</creator><creator>Kroposki, Ben</creator><creator>Ghirardi, Maria</creator><creator>Evans, Robert J.</creator><creator>Blake, Dan</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>F28</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>200804</creationdate><title>Renewable hydrogen production</title><author>Turner, John ; Sverdrup, George ; Mann, Margaret K. ; Maness, Pin-Ching ; Kroposki, Ben ; Ghirardi, Maria ; Evans, Robert J. ; Blake, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>08 HYDROGEN</topic><topic>09 BIOMASS FUELS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biomass</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>electrolysis</topic><topic>Hydrogen</topic><topic>hydrogen production</topic><topic>photobiology</topic><topic>renewable energy</topic><topic>solar</topic><topic>wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, John</creatorcontrib><creatorcontrib>Sverdrup, George</creatorcontrib><creatorcontrib>Mann, Margaret K.</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Kroposki, Ben</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Evans, Robert J.</creatorcontrib><creatorcontrib>Blake, Dan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Energy Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, John</au><au>Sverdrup, George</au><au>Mann, Margaret K.</au><au>Maness, Pin-Ching</au><au>Kroposki, Ben</au><au>Ghirardi, Maria</au><au>Evans, Robert J.</au><au>Blake, Dan</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewable hydrogen production</atitle><jtitle>International Journal of Energy Research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2008-04</date><risdate>2008</risdate><volume>32</volume><issue>5</issue><spage>379</spage><epage>407</epage><pages>379-407</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/er.1372</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International Journal of Energy Research, 2008-04, Vol.32 (5), p.379-407 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_miscellaneous_33128908 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 08 HYDROGEN 09 BIOMASS FUELS BASIC BIOLOGICAL SCIENCES biomass CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS electrolysis Hydrogen hydrogen production photobiology renewable energy solar wind energy |
title | Renewable hydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewable%20hydrogen%20production&rft.jtitle=International%20Journal%20of%20Energy%20Research&rft.au=Turner,%20John&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2008-04&rft.volume=32&rft.issue=5&rft.spage=379&rft.epage=407&rft.pages=379-407&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.1372&rft_dat=%3Cproquest_osti_%3E19710892%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19710892&rft_id=info:pmid/&rfr_iscdi=true |