Renewable hydrogen production

The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Energy Research 2008-04, Vol.32 (5), p.379-407
Hauptverfasser: Turner, John, Sverdrup, George, Mann, Margaret K., Maness, Pin-Ching, Kroposki, Ben, Ghirardi, Maria, Evans, Robert J., Blake, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 5
container_start_page 379
container_title International Journal of Energy Research
container_volume 32
creator Turner, John
Sverdrup, George
Mann, Margaret K.
Maness, Pin-Ching
Kroposki, Ben
Ghirardi, Maria
Evans, Robert J.
Blake, Dan
description The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/er.1372
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_33128908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19710892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs4p_gXC8KAH6cyPtmmOOuaUDYWhuFtIkxdX7dqZdMz992Z0eJOd3uF9eHzfF6FzgvsEY3oLrk8YpweoQ7AQESHx7BB1MEtZJDCfHaMT7z8xDjvCO-hiChWsVV5Cb74xrv6Aqrd0tVnppqirU3RkVenhbDe76O1h-Dp4jCYvo6fB3STScSZopGmSa8HTWGdcaQY0zm2SK0aN5dbGNjNZnFBDuTA5xwYMzTOeQohkMmWtZl102d6tfVNIr4sG9FzXVQW6kYRQEgsR0FWLQr7vFfhGLgqvoSxVBfXKS8YIzQTO9kOaUhz0XkgEJzg8GOB1C7WrvXdg5dIVC-U2kmC5bV2Ck9vWg7xp5booYfMfk8PpTketLnwDP39auS-ZcsYT-f48kmI8jscDfi8p-wWG4o-M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19710892</pqid></control><display><type>article</type><title>Renewable hydrogen production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Turner, John ; Sverdrup, George ; Mann, Margaret K. ; Maness, Pin-Ching ; Kroposki, Ben ; Ghirardi, Maria ; Evans, Robert J. ; Blake, Dan</creator><creatorcontrib>Turner, John ; Sverdrup, George ; Mann, Margaret K. ; Maness, Pin-Ching ; Kroposki, Ben ; Ghirardi, Maria ; Evans, Robert J. ; Blake, Dan ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.1372</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>08 HYDROGEN ; 09 BIOMASS FUELS ; BASIC BIOLOGICAL SCIENCES ; biomass ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; electrolysis ; Hydrogen ; hydrogen production ; photobiology ; renewable energy ; solar ; wind energy</subject><ispartof>International Journal of Energy Research, 2008-04, Vol.32 (5), p.379-407</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</citedby><cites>FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.1372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.1372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1121499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, John</creatorcontrib><creatorcontrib>Sverdrup, George</creatorcontrib><creatorcontrib>Mann, Margaret K.</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Kroposki, Ben</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Evans, Robert J.</creatorcontrib><creatorcontrib>Blake, Dan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Renewable hydrogen production</title><title>International Journal of Energy Research</title><addtitle>Int. J. Energy Res</addtitle><description>The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>08 HYDROGEN</subject><subject>09 BIOMASS FUELS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biomass</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>electrolysis</subject><subject>Hydrogen</subject><subject>hydrogen production</subject><subject>photobiology</subject><subject>renewable energy</subject><subject>solar</subject><subject>wind energy</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgCs4p_gXC8KAH6cyPtmmOOuaUDYWhuFtIkxdX7dqZdMz992Z0eJOd3uF9eHzfF6FzgvsEY3oLrk8YpweoQ7AQESHx7BB1MEtZJDCfHaMT7z8xDjvCO-hiChWsVV5Cb74xrv6Aqrd0tVnppqirU3RkVenhbDe76O1h-Dp4jCYvo6fB3STScSZopGmSa8HTWGdcaQY0zm2SK0aN5dbGNjNZnFBDuTA5xwYMzTOeQohkMmWtZl102d6tfVNIr4sG9FzXVQW6kYRQEgsR0FWLQr7vFfhGLgqvoSxVBfXKS8YIzQTO9kOaUhz0XkgEJzg8GOB1C7WrvXdg5dIVC-U2kmC5bV2Ck9vWg7xp5booYfMfk8PpTketLnwDP39auS-ZcsYT-f48kmI8jscDfi8p-wWG4o-M</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Turner, John</creator><creator>Sverdrup, George</creator><creator>Mann, Margaret K.</creator><creator>Maness, Pin-Ching</creator><creator>Kroposki, Ben</creator><creator>Ghirardi, Maria</creator><creator>Evans, Robert J.</creator><creator>Blake, Dan</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>F28</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>200804</creationdate><title>Renewable hydrogen production</title><author>Turner, John ; Sverdrup, George ; Mann, Margaret K. ; Maness, Pin-Ching ; Kroposki, Ben ; Ghirardi, Maria ; Evans, Robert J. ; Blake, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4892-c25bc9764c87ac3e24bf5ba32df7ff4f8d8452d279db70ded2b876e363d8affc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>08 HYDROGEN</topic><topic>09 BIOMASS FUELS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biomass</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>electrolysis</topic><topic>Hydrogen</topic><topic>hydrogen production</topic><topic>photobiology</topic><topic>renewable energy</topic><topic>solar</topic><topic>wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, John</creatorcontrib><creatorcontrib>Sverdrup, George</creatorcontrib><creatorcontrib>Mann, Margaret K.</creatorcontrib><creatorcontrib>Maness, Pin-Ching</creatorcontrib><creatorcontrib>Kroposki, Ben</creatorcontrib><creatorcontrib>Ghirardi, Maria</creatorcontrib><creatorcontrib>Evans, Robert J.</creatorcontrib><creatorcontrib>Blake, Dan</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Energy Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, John</au><au>Sverdrup, George</au><au>Mann, Margaret K.</au><au>Maness, Pin-Ching</au><au>Kroposki, Ben</au><au>Ghirardi, Maria</au><au>Evans, Robert J.</au><au>Blake, Dan</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewable hydrogen production</atitle><jtitle>International Journal of Energy Research</jtitle><addtitle>Int. J. Energy Res</addtitle><date>2008-04</date><risdate>2008</risdate><volume>32</volume><issue>5</issue><spage>379</spage><epage>407</epage><pages>379-407</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass‐to‐hydrogen processes, including gasification, pyrolysis, and fermentation, are less well‐developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long‐term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/er.1372</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International Journal of Energy Research, 2008-04, Vol.32 (5), p.379-407
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_miscellaneous_33128908
source Wiley Online Library Journals Frontfile Complete
subjects 08 HYDROGEN
09 BIOMASS FUELS
BASIC BIOLOGICAL SCIENCES
biomass
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
electrolysis
Hydrogen
hydrogen production
photobiology
renewable energy
solar
wind energy
title Renewable hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewable%20hydrogen%20production&rft.jtitle=International%20Journal%20of%20Energy%20Research&rft.au=Turner,%20John&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2008-04&rft.volume=32&rft.issue=5&rft.spage=379&rft.epage=407&rft.pages=379-407&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.1372&rft_dat=%3Cproquest_osti_%3E19710892%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19710892&rft_id=info:pmid/&rfr_iscdi=true